Computer Security: Problem

- The Problem: Billions in Losses
 - Outright theft
 - Online scams
 - Viruses / Worms
 - Actual damage
 - Actions to avoid damage
 - Denial of Service
 - Etc.
- Possible Traps (Public System)
 - Trojan Horse
 - Onlooker
 - Cameras

Computer Security: Defenses

- Passwords
 - Using Secure Passwords
 - Keeping them Secure
- Encryption
 - Simple (Classical Encryption – Pre-Computer)
 - Strong (Modern – Computer Based)
- Good Practices
 - Like all fields, doing something stupid ...
- Tradeoffs
 - Is the cure worse than the disease?
- Long Live Common Sense!

Good Passwords and Cracking

- Briefcase (style) Combination Locks
 - Brute force methods: Try all combinations
 1. Number of wheels
 2. Number of position per wheel
 3. Time per trial
 4. How long does it take?
- Contrast to BRUTE brute force method (Always Consider!)
- Password on a computer
 - More possibilities per “wheel”
 - More “wheels” (often up to user)
 - Computer based cracking faster!
 - Dictionary attacks
- Picking a good UNIX password

Classical Encryption

- When passwords fail, encryption can be fallback
 - Also provides extra level of difficulty
- Security vs. Privacy
- Many levels of encryption sophistication:
 - Go through some of them
- Single Alphabetic Substitution
 - Caesar: LFDPH, LVDJ, LFQTXHUHG
 - Magic decoder ring?
 - Cryptoquote
- Cracking single alphabetic substitution
 - Character frequency -- ETAONIRSH
 - (Length of text)
Classical Encryption: Single Alphabet

Classical Encryption

Polyalphabetic Substitution
- The Vignere Cypher
- The Babbit Solution
 - How many alphabets used?
 - Digraph frequency “th”
 - Several Single-Alphabet problems
- Cypher Reuse!
 - Bigger pool of data
 - Patterns become obvious
- One Time Pads
 - Can be Absolutely Secure
 - Computers and Random Number Generators ?!

The Key Exchange Problem
- Threats
- Using your “secure” channel
- A padlock analogy
- Diffie, Hellman, and Merkle solution