Using Recursion in Graphics

- Recursion can be a powerful tool
- Closely related to *Fractals*
 - Self-similarity
 - Keep zooming in: still looks the same
- Can produce very interesting figures with very little input
- Serpinsky Gasket is just a lot of triangles
 - Define recursively
Serpinsky Gasket

- Start with triangle

- Then put (1/2 size) triangles within triangle
Serpinsky Gasket

- Continue process with $\frac{1}{4}$ sized triangles, etc

- *Insight:* use *Serpinsky Gaskets* instead of triangles
Rendering a Serpinsky Gasket

- Mathematically, Gasket is defined for infinitely small triangle.
 - Goes on forever
 - Zoom in as far as you like: always the same picture

- In *drawing* a Serpinsky Gasket what are the issues?
 - Time to draw
 - What can you see

- How do we handle this potentially infinite recursion?
 - What to use as the base case?
 - ???
Serpinsky Demo

- In code directory
 - Using Applet
 - Run Serpinsky.html
- Note feature to slow down drawing
 - Get better sense of how recursive calls work
 - Also see how incredibly fast computer is...
- Review recursive features
 - What is done in the base case?
- What would figure be like if we drew nothing except
 - In the base case?
Classwork/Lab

- Will be doing two different figures recursively
 - Target
 - Circle Art
- For each, will use 2 approaches

1. **One Object: Draw Recursively**
 - Our drawing technique will use recursion
2. **Object Creates Other Object Recursively**
 - Each object will create “clone” objects using `new`
 - Each of smaller size and in different positions
 - Will invoke the `paint` methods of these clones