Computer Security: Problem

- **The Problem: Billions in Losses**
 - Outright theft
 - Online scams
 - Viruses / Worms
 - Actual damage
 - Actions to avoid damage
 - Denial of Service
 - Etc.

- **Possible Traps (Public Systems !!!)**
 - Trojan Horse
 - Onlooker
 - Cameras
Computer Security: Defenses

- **Passwords**
 - Using Secure Passwords
 - Keeping them Secure

- **Encryption**
 - Simple (Classical Encryption – Pre-Computer)
 - Strong (Modern – Computer Based)

- **Good Practices**
 - Like all fields, doing something stupid ...

- **Tradeoffs**
 - Is the cure worse than the disease?

- **Long Live Common Sense!**
Good Passwords and Cracking

- Briefcase (style) Combination Locks
 - Brute force methods: Try all combinations
 1. Number of wheels
 2. Number of position per wheel
 3. Time per trial
 4. How long does it take?

- Contrast to BRUTE brute force method (Always Consider!)

- Password on a computer
 - + More possibilities per “wheel”
 - + More “wheels” (often up to user)
 - - Computer based cracking faster!
 - - Dictionary attacks

- Picking a good UNIX password
Classical Encryption

- When passwords fail, encryption can be fallback
 - Also provides extra level of difficulty
- Security vs. Privacy
- Many levels of encryption sophistication:
 - Go through some of them
- Single Alphabetic Substitution
 - Caesar: L FDPH, L VDZ, L FRQTXHUH
 - Magic decoder ring?
 - Cryptoquote
- Cracking single alphabetic substitution
 - Character frequency -- ETAONIRSH
 - (Length of text)
Classical Encryption: Single Alphabet

IFOJ LKFJN DCE LNPNC XNDJL DVF

FOJ IDMRNJL UJFOVRM IFJMR FC

MRSL KFCMSCNCM, D CNQ CDMSFC,

KFCKNSPNE SC BSUNJMX, DCE

ENESKDMNE MF MRN GJFGFLSMSFC

MRDM DBB ANC DJN KJNDMNE NHODB.

-- D BSCKFBC

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>H</td>
<td>1</td>
<td>O</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>I</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>C</td>
<td>16</td>
<td>J</td>
<td>11</td>
<td>Q</td>
</tr>
<tr>
<td>D</td>
<td>14</td>
<td>K</td>
<td>7</td>
<td>R</td>
</tr>
<tr>
<td>E</td>
<td>7</td>
<td>L</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>M</td>
<td>15</td>
<td>T</td>
</tr>
<tr>
<td>G</td>
<td>2</td>
<td>N</td>
<td>18</td>
<td>U</td>
</tr>
</tbody>
</table>
Classical Encryption

- Polyalphabetic Substitution
 - The Vignere Cypher
 - The Babbit Solution
 - How many alphabets used?
 - digraph frequency “th”
 - Several Single-Alphabet problems

- Cypher Reuse!
 - Bigger pool of data
 - Patterns become obvious

- One Time Pads
 - Can be Absolutely Secure
 - Computers and Random Number Generators ?!
Classical Encryption

- The Key Exchange Problem
 - Threats
 - Using your “secure” channel
 - A padlock analogy
 - Diffie, Hellman, and Merkle solution