
CPS 100 10.1

Graphs, the Internet, and Everything

http://www.caida.org/

CPS 100 10.2

Airline routes

CPS 100 10.3

Word ladder

CPS 100 10.4

Tim Berners-Lee
I want you to realize that, if you

can imagine a computer doing
something, you can program a
computer to do that.

 Unbounded opportunity...
limited only by your
imagination. And a couple of
laws of physics.

 TCP/IP, HTTP
 How, Why, What, When?

CPS 100 10.5

Graphs: Structures and Algorithms
 How do packets of bits/information get routed on the internet

 Message divided into packets on client (your) machine
 Packets sent out using routing tables toward destination

• Packets may take different routes to destination
• What happens if packets lost or arrive out-of-order?

 Routing tables store local information, not global (why?)

 What about The Oracle of Bacon, Erdos Numbers, and Word
Ladders?
 All can be modeled using graphs
 What kind of connectivity does each concept model?

 Graphs are everywhere in the world of algorithms (world?)

CPS 100 10.6

Vocabulary
 Graphs are collections of vertices

and edges (vertex also called
node)
 Edge connects two vertices

• Direction can be important,
directed edge, directed graph

• Edge may have associated
weight/cost

 A vertex sequence v0, v1, …, vn-1 is
a path where vk and vk+1 are
connected by an edge.
 If some vertex is repeated, the

path is a cycle
 A graph is connected if there is

a path between any pair of
vertices

NYC Phil

Boston
Wash DC

204

78

190

268

394

LGA LAX

ORDDCA $186

$186

$412 $1701

$441

CPS 100 10.7

Graph questions/algorithms
 What vertices are reachable from a given vertex?

 Two standard traversals: depth-first, breadth-first
 Find connected components, groups of connected vertices

 Shortest path between any two vertices (weighted graphs?)
 Breadth first search is storage expensive
 Dijkstra’s algorithm is efficient, uses a priority queue too!

 Longest path in a graph
 No known efficient algorithm

 Visit all vertices without repeating? Visit all edges?
 With minimal cost? Hard!

CPS 100 10.8

Depth, Breadth, other traversals
 We want to visit every vertex that can be reached from a

specific starting vertex (we might try all starting vertices)
 Make sure we don't visit a vertex more than once

• Why isn't this an issue in trees?
• Mark vertex as visited, use set/array/map for this

– Can keep useful information to help with visited status
 Order in which vertices visited can be important
 Storage and runtime efficiency of traversals important

 What other data structures do we have: stack, queue, …
 What happens when we traverse using priority queue?

CPS 100 10.9

Breadth first search
 In an unweighted graph this finds the shortest path between a

start vertex and every vertex
 Visit every node one away from start
 Visit every node two away from start

• This is every node one away from a node one away

 Visit every node three away from start, …

 Put vertex on queue to start (initially just one)
 Repeat: take vertex off queue, put all adjacent vertices on
 Don’t put a vertex on that’s already been visited (why?)
 When are 1-away vertices enqueued? 2-away? 3-away?
 How many vertices on queue?

CPS 100 10.10

Code for breadth first
public void breadth(String vertex){
 Set<String> visited = new TreeSet<String>();
 Queue<String> q = new LinkedList<String>();
 q.add(vertex);
 visited.add(vertex);
 while (q.size() > 0) {
 String current = q.remove();
 // process current
 for(each v adjacent to current){
 if (!visited.contains(v)){// not visited
 visited.add(v);
 q.add(v);
 }
 }
 }
}

1

2
3

4

5

6

7

CPS 100 10.11

Pseudo-code for depth-first search
void depthfirst(String vertex){
 if (! alreadySeen(vertex))
 {

 markAsSeen(vertex);
 System.out.println(vertex);
 for(each v adjacent to vertex) {
 depthfirst(v);
 }

 }
}

 Clones are stacked up, problem? Can we make use
of stack explicit?

1

2
3

4

5

6

7

CPS 100 10.12

BFS compared to DFS
public Set<Graph.Vertex> bfs(Graph.Vertex start){
 Set<Graph.Vertex> visited = new TreeSet<Graph.Vertex>();
 Queue<Graph.Vertex> qu = new LinkedList<Graph.Vertex>();
 visited.add(start);
 qu.add(start);

 while (qu.size() > 0){
 Graph.Vertex v = qu.remove();
 for(Graph.Vertex adj : myGraph.getAdjacent(v)){
 if (! visited.contains(adj)) {
 visited.add(adj);
 qu.add(adj);
 }
 }
 }
 return visited;
}

CPS 100 10.13

BFS becomes DFS
public Set<Graph.Vertex> dfs(Graph.Vertex start){
 Set<Graph.Vertex> visited = new TreeSet<Graph.Vertex>();
 Queue<Graph.Vertex> qu = new LinkedList<Graph.Vertex>();
 visited.add(start);
 qu.add(start);

 while (qu.size() > 0){
 Graph.Vertex v = qu.remove();
 for(Graph.Vertex adj : myGraph.getAdjacent(v)){
 if (! visited.contains(adj)) {
 visited.add(adj);
 qu.add(adj);
 }
 }
 }
 return visited;
}

CPS 100 10.14

DFS arrives
public Set<Graph.Vertex> dfs(Graph.Vertex start){
 Set<Graph.Vertex> visited = new TreeSet<Graph.Vertex>();
 Stack<Graph.Vertex> qu = new Stack<Graph.Vertex>();
 visited.add(start);
 qu.push(start);

 while (qu.size() > 0){
 Graph.Vertex v = qu.pop();
 for(Graph.Vertex adj : myGraph.getAdjacent(v)){
 if (! visited.contains(adj)) {
 visited.add(adj);
 qu.push(adj);
 }
 }
 }
 return visited;
}

CPS 100 10.15

Edsger Dijkstra
 Turing Award, 1972
 Operating systems and

concurrency
 Algol-60 programming language
 Goto considered harmful
 Shortest path algorithm
 Structured programming
 “Program testing can show the

presence of bugs, but never their
absence”

 A Discipline of programming
 “For the absence of a bibliography I

offer neither explanation nor
apology”

CPS 100 10.16

What is the Internet?
 The Internet was originally designed as an

"overlay" network running on top of existing phone
and other networks. It is based on a small set of
software protocols that direct routers inside the
network to forward data from source to destination,
while applications run on the Internet to rapidly
scale into a critical global service. However, this
success now makes it difficult to create and test
new ways of protecting it from abuses, or from
implementing innovative applications and services.

http://www.intel.com/labs/features/idf09041.htm

CPS 100 10.17

How does the Internet work?
 Differences between the Internet and phone networks

 Dedicated circuits/routes
 Distributed, end-to-end

 Where is the intelligence?
 Not in the network, per se, in the design and the ends
 End-to-end Arguments in System Design

 Success of email, web, etc., relies on not building intelligence
into the network
 What about overlay networks?
 What about PlanetLab?

CPS 100 10.18

Graph implementations
 Typical operations on graph:

 Add vertex
 Add edge (parameters?)
 getAdjacent(vertex)
 getVertices(..)
 String->Vertex (vice versa)

 Different kinds of graphs
 Lots of vertices, few edges,

sparse graph
• Use adjacency list

 Lots of edges (max # ?)
dense graph
• Use adjacency matrix

Adjacency list

CPS 100 10.19

Graph implementations (continued)
 Adjacency matrix

 Every possible edge
represented, how many?

 Adjacency list uses O(V+E) space
 What about matrix?
 Which is better?

 What do we do to get adjacent
vertices for given vertex?
 What is complexity?
 Compared to adjacency list?

 What about weighted edges?

T F …

CPS 100 10.20

Shortest path in weighted graph
 We need to modify approach slightly for weighted graph

 Edges have weights, breadth first by itself doesn’t work
 What’s shortest path from A to F in graph below?

 Use same idea as breadth first search
 Don’t add 1 to current distance, add ???
 Might adjust distances more than once
 What vertex do we visit next?

 What vertex is next is key
 Use greedy algorithm: closest
 Huffman is greedy, …

D

E

A

B

C

F

4

3 4

6

3

2

28

CPS 100 10.21

Greedy Algorithms
 A greedy algorithm makes a locally optimal decision that

leads to a globally optimal solution
 Huffman: choose two nodes with minimal weight,

combine
• Leads to optimal coding, optimal Huffman tree

 Making change with American coins: choose largest coin
possible as many times as possible
• Change for $0.63, change for $0.32
• What if we’re out of nickels, change for $0.32?

 Greedy doesn’t always work, but it does sometimes
 Weighted shortest path algorithm is Dijkstra’s algorithm,

greedy and uses priority queue

