
CPS 100 3.1

Analyzing Algorithms
 Consider three solutions to SortByFreqs

 Sort, then scan looking for changes
 Insert into Set, then count each unique string
 Find unique elements without sorting, sort these, then

count each unique string
 Use a Map (TreeMap or HashMap)

 We want to discuss trade-offs of these solutions
 Ease to develop, debug, verify
 Runtime efficiency
 Vocabulary for discussion

CPS 100 3.2

What is big-Oh about? (preview)
 Intuition: avoid details when they don’t matter, and they don’t

matter when input size (N) is big enough
 For polynomials, use only leading term, ignore coefficients

 y = 3x y = 6x-2 y = 15x + 44
 y = x2 y = x2-6x+9 y = 3x2+4x

 The first family is O(n), the second is O(n2)
 Intuition: family of curves, generally the same shape
 More formally: O(f(n)) is an upper-bound, when n is

large enough the expression cf(n) is larger
 Intuition: linear function: double input, double time,

quadratic function: double input, quadruple the time

CPS 100 3.3

Recall adding to list (class handout)
 Add one element to front of ArrayList

 Shift all elements
 Cost N for N-element list
 Cost 1 + 2 + … + N = N(N+1)/2 if repeated

 Add one element to front of LinkedList
 No shifting, add one link
 Cost is independent of N, constant-time cost
 Cost 1 + 1 + … + 1 = N if repeated

CPS 100 3.4

More on O-notation, big-Oh
 Big-Oh hides/obscures some empirical analysis, but is good

for general description of algorithm
 Allows us to compare algorithms in the limit

• 20N hours vs N2 microseconds: which is better?

 O-notation is an upper-bound, this means that N is O(N),
but it is also O(N2); we try to provide tight bounds.
Formally:
 A function g(N) is O(f(N)) if there exist constants c

and n such that g(N) < cf(N) for all N > n
cf(N)

g(N)

x = n

CPS 100 3.5

Which graph is “best” performance?

CPS 100 3.6

Big-Oh calculations from code
 Search for element in an array:

 What is complexity of code (using O-notation)?
 What if array doubles, what happens to time?

 for(int k=0; k < a.length; k++) {
 if (a[k].equals(target)) return true;
 };
 return false;

 Complexity if we call N times on M-element vector?
 What about best case? Average case? Worst case?

CPS 100 3.7

Amortization: Expanding ArrayLists
 Expand capacity of list when add() called
 Calling add N times, doubling capacity as needed

 What if we grow size by one each time?

2m+1around 22m+2-22 m+12m+1 - 2m+1

81.751485-8
41.5643-4
21222
10001

Capacity After
add

Resizing Cost
per item

Cumulative
cost

Resizing costItem #

CPS 100 3.8

Some helpful mathematics
 1 + 2 + 3 + 4 + … + N

 N(N+1)/2, exactly = N2/2 + N/2 which is O(N2) why?
 N + N + N + …. + N (total of N times)

 N*N = N2 which is O(N2)

 N + N + N + …. + N + … + N + … + N (total of 3N times)
 3N*N = 3N2 which is O(N2)

 1 + 2 + 4 + … + 2N

 2N+1 – 1 = 2 x 2N – 1 which is O(2N)

 Impact of last statement on adding 2N+1 elements to a vector
 1 + 2 + … + 2N + 2N+1 = 2N+2-1 = 4x2N-1 which is O(2N)
 resizing + copy = total (let x = 2N)

CPS 100 3.9

Running times @ 106 instructions/sec

318
centuries

18.3 hr16.7 min0.0000301,000,000,000

11.6 day19.91.00.0000201,000,000

2.78 hr1.6610000.100000.000017100,000

1.7 min0.1329000.010000.00001310,000

1.00.0100000.001000.0000101,000

0.10000.0006640.000100.000007100

0.00010.0000330.000010.00000310

O(N2)O(N log N)O(N)O(log N)N

CPS 100 3.10

Getting in front
 Suppose we want to add a new element

 At the back of a string or an ArrayList or a …
 At the front of a string or an ArrayList or a …
 Is there a difference? Why? What's complexity?

 Suppose this is an important problem: we want to grow at the
front (and perhaps at the back)
 Think editing film clips and film splicing
 Think DNA and gene splicing

 Self-referential data structures to the rescue
 References, reference problems, recursion, binky

CPS 100 3.11

What’s the Difference Here?
 How does find-a-track work? Fast forward?

CPS 100 3.12

Contrast LinkedList and ArrayList
 See ISimpleList, SimpleLinkedList, SimpleArrayList

 Meant to illustrate concepts, not industrial-strength
 Very similar to industrial-strength, however

 ArrayList --- why is access O(1) or constant time?
 Storage in memory is contiguous, all elements same size
 Where is the 1st element? 40th? 360th?
 Doesn’t matter what’s in the ArrayList, everything is a

pointer or a reference (what about null?)

CPS 100 3.13

What about LinkedList?
 Why is access of Nth element linear time?
 Why is adding to front constant-time O(1)?

front

CPS 100 3.14

ArrayLists and linked lists as ADTs
 As an ADT (abstract data type) ArrayLists support

 Constant-time or O(1) access to the k-th element
 Amortized linear or O(n) storage/time with add

• Total storage used in n-element vector is approx. 2n, spread over all
accesses/additions (why?)

 Adding a new value in the middle of an ArrayList is expensive, linear or
O(n) because shifting required

 Linked lists as ADT
 Constant-time or O(1) insertion/deletion anywhere, but…
 Linear or O(n) time to find where, sequential search

 Good for sparse structures: when data are scarce, allocate exactly as many list
elements as needed, no wasted space/copying (e.g., what happens when vector
grows?)

CPS 100 3.15

Linked list applications
 Remove element from middle of a collection, maintain order, no

shifting. Add an element in the middle, no shifting
 What’s the problem with a vector (array)?
 Emacs visits several files, internally keeps a linked-list of

buffers
 Naively keep characters in a linked list, but in practice too

much storage, need more esoteric data structures

 What’s (3x5 + 2x3 + x + 5) + (2x4 + 5x3 + x2 +4x) ?
 As a vector (3, 0, 2, 0, 1, 5) and (0, 2, 5, 1, 4, 0)
 As a list ((3,5), (2,3), (1,1), (5,0)) and ________?
 Most polynomial operations sequentially visit terms, don’t

need random access, do need “splicing”
 What about (3x100 + 5) ?

CPS 100 3.16

Linked list applications continued
 If programming in C, there are no “growable-arrays”, so

typically linked lists used when # elements in a collection
varies, isn’t known, can’t be fixed at compile time
 Could grow array, potentially expensive/wasteful

especially if # elements is small.
 Also need # elements in array, requires extra parameter
 With linked list, one pointer used to access all the

elements in a collection

 Simulation/modeling of DNA gene-splicing
 Given list of millions of CGTA… for DNA strand, find

locations where new DNA/gene can be spliced in
• Remove target sequence, insert new sequence

CPS 100 3.17

Linked lists, CDT and ADT
 As an ADT

 A list is empty, or contains an element and a list
 () or (x, (y, ()))

 As a picture

 As a CDT (concrete data type)
public class Node
{ Node p = new Node();

String value; p.value = “hello”;
Node next; p.next = null;

};

p

0

CPS 100 3.18

Building linked lists
 Add words to the front of a list (draw a picture)

 Create new node with next pointing to list, reset start of list

 public class Node {
 String value;
 Node next;
 Node(String s, Node link){
 value = s;
 next = link;
 }
 };
 // … declarations here
 Node list = null;
 while (scanner.hasNext()) {
 list = new Node(scanner.next(), list);
 }
 What about adding to the end of the list?

CPS 100 3.19

Dissection of add-to-front
 List initially empty
 First node has first word

 Each new word causes new
node to be created
 New node added to front

 Rhs of operator = completely
evaluated before assignment

list
A

list = new Node(word,list);

B

 Node(String s, Node link)
 { info = s; next = link;}

list

CPS 100 3.20

Standard list processing (iterative)
 Visit all nodes once, e.g., count them or process them

public int size(Node list){
 int count = 0;
 while (list != null) {
 count++;
 list = list.next;
 }
 return count;
}

 What changes in code above if we change what “process” means?
 Print nodes?
 Append “s” to all strings in list?

CPS 100 3.21

Nancy Leveson: Software Safety
Founded the field
 Mathematical and engineering

aspects
 Air traffic control
 Microsoft word

 "C++ is not state-of-the-art, it's
only state-of-the-practice, which
in recent years has been going
backwards"

Software and steam engines: once extremely dangerous?
http://sunnyday.mit.edu/steam.pdf

THERAC 25: Radiation machine that killed many people
http://sunnyday.mit.edu/papers/therac.pdf

CPS 100 3.22

Building linked lists continued
 What about adding a node to the end of the list?

 Can we search and find the end?
 If we do this every time, what’s complexity of building an

N-node list? Why?

 Alternatively, keep pointers to first and last nodes of list
 If we add node to end, which pointer changes?
 What about initially empty list: values of pointers?

• Will lead to consideration of header node to avoid special cases
in writing code

 What about keeping list in order, adding nodes by splicing into
list? Issues in writing code? When do we stop searching?

CPS 100 3.23

Standard list processing (recursive)
 Visit all nodes once, e.g., count them

 public int recsize(Node list) {
 if (list == null) return 0;
 return 1 + recsize(list.next);
 }

 Base case is almost always empty list: null pointer
 Must return correct value, perform correct action
 Recursive calls use this value/state to anchor recursion
 Sometimes one node list also used, two “base” cases

 Recursive calls make progress towards base case
 Almost always using list.next as argument

CPS 100 3.24

Recursion with pictures
 Counting recursively

int recsize(Node list){
 if (list == null)
 return 0;
 return 1 +
 recsize(list.next);
}

recsize(Node list)

return 1+
recsize(list.next)

recsize(Node list)

return 1+
recsize(list.next)

recsize(Node list)

return 1+
recsize(list.next)

recsize(Node list)

return 1+
recsize(list.next)System.out.println(recsize(ptr));

ptr

CPS 100 3.25

Recursion and linked lists
 Print nodes in reverse order

 Print all but first node and…
• Print first node before or after other printing?

 public void print(Node list) {
 if (list != null) {

 }
 }

print(list.next);

System.out.println(list.info);

System.out.println(list.info);

print(list.next);

CPS 100 3.26

Complexity Practice
 What is complexity of Build? (what does it do?)

 public Node build(int n) {
 if (null == n) return null;
 Node first = new Node(n, build(n-1));
 for(int k = 0; k < n-1; k++) {
 first = new Node(n,first);
 }
 return first;
 }

 Write an expression for T(n) and for T(0), solve.
 Let T(n) be time for build to execute with n-node list
 T(n) = T(n-1) + O(n)

CPS 100 3.27

Changing a linked list recursively
 Pass list to method, return altered list, assign to list

 Idiom for changing value parameters

list = change(list, “apple”);
public Node change(Node list, String key) {
 if (list != null) {
 list.next = change(list.next, key);
 if (list.info.equals(key)) return list.next;
 else return list;
 }
 return null;
 }
 What does this code do? How can we reason about it?

 Empty list, one-node list, two-node list, n-node list
 Similar to proof by induction

