
CPS 100 3.1

Analyzing Algorithms
 Consider three solutions to SortByFreqs

 Sort, then scan looking for changes
 Insert into Set, then count each unique string
 Find unique elements without sorting, sort these, then

count each unique string
 Use a Map (TreeMap or HashMap)

 We want to discuss trade-offs of these solutions
 Ease to develop, debug, verify
 Runtime efficiency
 Vocabulary for discussion

CPS 100 3.2

What is big-Oh about? (preview)
 Intuition: avoid details when they don’t matter, and they don’t

matter when input size (N) is big enough
 For polynomials, use only leading term, ignore coefficients

      y = 3x     y = 6x-2     y = 15x + 44
      y = x2     y = x2-6x+9   y = 3x2+4x

 The first family is O(n), the second is O(n2)
 Intuition: family of curves, generally the same shape
 More formally: O(f(n)) is an upper-bound, when n is

large enough the expression cf(n) is larger
 Intuition: linear function: double input, double time,

quadratic function: double input, quadruple the time

CPS 100 3.3

Recall adding to list (class handout)
 Add one element to front of ArrayList

 Shift all elements
 Cost N for N-element list
 Cost 1 + 2 + … + N  = N(N+1)/2 if repeated

 Add one element to front of LinkedList
 No shifting, add one link
 Cost is independent of N, constant-time cost
 Cost 1 + 1 + … + 1 = N if repeated

CPS 100 3.4

More on O-notation, big-Oh
 Big-Oh hides/obscures some empirical analysis, but is good

for general description of algorithm
 Allows us to compare algorithms in the limit

• 20N hours vs N2 microseconds: which is better?

 O-notation is an upper-bound, this means that N is O(N),
but it is also O(N2); we try to provide tight bounds.
Formally:
 A function g(N) is O(f(N)) if there exist constants c

and n such that g(N) < cf(N) for all N > n
cf(N)

g(N)

x = n



CPS 100 3.5

Which graph is “best” performance?

CPS 100 3.6

Big-Oh calculations from code
 Search for element in an array:

 What is complexity of code (using O-notation)?
 What if array doubles, what happens to time?

 for(int k=0; k < a.length; k++) {
    if (a[k].equals(target)) return true;
 };
 return false;

 Complexity if we call N times on M-element vector?
 What about best case? Average case? Worst case?

CPS 100 3.7

Amortization: Expanding ArrayLists
 Expand capacity of list when add() called
 Calling add N times, doubling capacity as needed

 What if we grow size by one each time?

2m+1around 22m+2-22 m+12m+1 - 2m+1

81.751485-8
41.5643-4
21222
10001

Capacity After
add

Resizing Cost
per item

Cumulative
cost

Resizing costItem #

CPS 100 3.8

Some helpful mathematics
 1 + 2 + 3 + 4 + … + N

 N(N+1)/2, exactly = N2/2 + N/2 which is  O(N2) why?
 N + N + N + …. + N (total of N times)

 N*N = N2 which is O(N2)

 N + N + N + …. + N  + … + N + … + N (total of 3N times)
 3N*N = 3N2 which is O(N2)

 1 + 2 + 4 + … + 2N

 2N+1 – 1 = 2 x 2N – 1 which is O(2N )

 Impact of last statement on adding 2N+1 elements to a vector
 1 + 2 + … + 2N +  2N+1 = 2N+2-1 = 4x2N-1 which is O(2N)
  resizing   + copy = total (let x = 2N)



CPS 100 3.9

Running times @ 106 instructions/sec

318
centuries

18.3 hr16.7 min0.0000301,000,000,000

11.6 day19.91.00.0000201,000,000

2.78 hr1.6610000.100000.000017100,000

1.7 min0.1329000.010000.00001310,000

1.00.0100000.001000.0000101,000

0.10000.0006640.000100.000007100

0.00010.0000330.000010.00000310

O(N2)O(N log N)O(N)O(log N)N

CPS 100 3.10

Getting in front
 Suppose we want to add a new element

 At the back of a string or an ArrayList or a …
 At the front of a string or an ArrayList or a …
 Is there a difference? Why? What's complexity?

 Suppose this is an important problem: we want to grow at the
front (and perhaps at the back)
 Think editing film clips and film splicing
 Think DNA and gene splicing

 Self-referential data structures to the rescue
 References, reference problems, recursion, binky

CPS 100 3.11

What’s the Difference Here?
 How does find-a-track work? Fast forward?

CPS 100 3.12

Contrast LinkedList and ArrayList
 See ISimpleList, SimpleLinkedList, SimpleArrayList

 Meant to illustrate concepts, not industrial-strength
 Very similar to industrial-strength, however

 ArrayList --- why is access O(1) or constant time?
 Storage in memory is contiguous, all elements same size
 Where is the 1st element? 40th? 360th?
 Doesn’t matter what’s in the ArrayList, everything is a

pointer or a reference (what about null?)



CPS 100 3.13

What about LinkedList?
 Why is access of Nth element linear time?
 Why is adding to front constant-time O(1)?

front

CPS 100 3.14

ArrayLists and linked lists as ADTs
 As an ADT (abstract data type) ArrayLists support

 Constant-time or O(1) access to the k-th element
 Amortized linear or O(n) storage/time with add

• Total storage used in n-element vector is approx. 2n, spread over all
accesses/additions (why?)

 Adding a new value in the middle of an ArrayList is expensive, linear or
O(n) because shifting required

 Linked lists as ADT
 Constant-time or O(1) insertion/deletion anywhere, but…
 Linear or O(n) time to find where, sequential search

 Good for sparse structures: when data are scarce, allocate exactly as many list
elements as needed, no wasted space/copying (e.g., what happens when vector
grows?)

CPS 100 3.15

Linked list applications
 Remove element from middle of a collection, maintain order, no

shifting. Add an element in the middle, no shifting
 What’s the problem with a vector (array)?
 Emacs visits several files, internally keeps a linked-list of

buffers
 Naively keep characters in a linked list, but in practice too

much storage, need more esoteric data structures

 What’s (3x5 + 2x3 + x + 5) + (2x4 + 5x3 + x2 +4x) ?
 As a vector (3, 0, 2, 0, 1, 5) and (0, 2, 5, 1, 4, 0)
 As a list ((3,5), (2,3), (1,1), (5,0)) and ________?
 Most polynomial operations sequentially visit terms, don’t

need random access, do need “splicing”
 What about (3x100 + 5) ?

CPS 100 3.16

Linked list applications continued
 If programming in C, there are no “growable-arrays”, so

typically linked lists used when # elements in a collection
varies, isn’t known, can’t be fixed at compile time
 Could grow array, potentially expensive/wasteful

especially if # elements is small.
 Also need # elements in array, requires extra parameter
 With linked list, one pointer used to access all the

elements in a collection

 Simulation/modeling of DNA gene-splicing
 Given list of millions of CGTA… for DNA strand, find

locations where new DNA/gene can be spliced in
• Remove target sequence, insert new sequence



CPS 100 3.17

Linked lists, CDT and ADT
 As an ADT

 A list is empty, or contains an element and a list
 ( ) or (x, (y, ( ) ) )

 As a picture

 As a CDT (concrete data type)
public class Node
{                           Node p = new Node();

String value;           p.value = “hello”;
Node next;              p.next = null;

};

p

0

CPS 100 3.18

Building linked lists
 Add words to the front of a list (draw a picture)

 Create new node with next pointing to list, reset start of list

 public class Node {
    String value;
    Node next;
    Node(String s, Node link){
      value = s;
      next = link;
    }
 };
 // … declarations here
 Node list = null;
 while (scanner.hasNext()) {
     list = new Node(scanner.next(), list);
 }
 What about adding to the end of the list?

CPS 100 3.19

Dissection of add-to-front
 List initially empty
 First node has first word

 Each new word causes new
node to be created
 New node added to front

 Rhs of operator = completely
evaluated before assignment

list
A

list = new Node(word,list);

B

    Node(String s,  Node link)
    { info = s; next = link;}

list

CPS 100 3.20

Standard list processing (iterative)
 Visit all nodes once, e.g., count them or process them

public int size(Node list){
    int count = 0;
    while (list != null) {
       count++;
       list = list.next;
    }
    return count;
}

 What changes in code above if we change what “process” means?
 Print nodes?
 Append “s” to all strings in list?



CPS 100 3.21

Nancy Leveson: Software Safety
Founded the field
 Mathematical and engineering

aspects
 Air traffic control
 Microsoft word

     "C++ is not state-of-the-art, it's
only state-of-the-practice, which
in recent years has been going
backwards"

Software and steam engines:   once extremely dangerous?
http://sunnyday.mit.edu/steam.pdf

THERAC 25: Radiation machine that killed many people
http://sunnyday.mit.edu/papers/therac.pdf

CPS 100 3.22

Building linked lists continued
 What about adding a node to the end of the list?

 Can we search and find the end?
 If we do this every time, what’s complexity of building an

N-node list? Why?

 Alternatively, keep pointers to first and last nodes of list
 If we add node to end, which pointer changes?
 What about initially empty list: values of pointers?

• Will lead to consideration of header node to avoid special cases
in writing code

 What about keeping list in order, adding nodes by splicing into
list? Issues in writing code? When do we stop searching?

CPS 100 3.23

Standard list processing (recursive)
 Visit all nodes once, e.g., count them

 public int recsize(Node  list) {
     if (list == null) return 0;
     return 1 + recsize(list.next);
 }

 Base case is almost always empty list: null pointer
 Must return correct value, perform correct action
 Recursive calls use this value/state to anchor recursion
 Sometimes one node list also used, two “base” cases

 Recursive calls make progress towards base case
 Almost always using list.next as argument

CPS 100 3.24

Recursion with pictures
 Counting recursively

int recsize(Node list){
  if (list == null)
       return 0;
  return 1 +
      recsize(list.next);
}

recsize(Node list)

return 1+
recsize(list.next)

recsize(Node list)

return 1+
recsize(list.next)

recsize(Node list)

return 1+
recsize(list.next)

recsize(Node list)

return 1+
recsize(list.next)System.out.println(recsize(ptr));

ptr



CPS 100 3.25

Recursion and linked lists
 Print nodes in reverse order

 Print all but first node and…
• Print first node before or after other printing?

 public void print(Node list) {
     if (list != null) {

     }
 }

print(list.next);

System.out.println(list.info);

System.out.println(list.info);

print(list.next);

CPS 100 3.26

Complexity Practice
 What is complexity of Build? (what does it do?)

    public Node build(int n) {
        if (null == n) return null;
        Node first = new Node(n, build(n-1));
        for(int k = 0; k < n-1; k++) {
            first = new Node(n,first);
        }
        return first;
    }

  Write an expression for T(n) and for T(0), solve.
 Let T(n) be time for build to execute with n-node list
 T(n) = T(n-1) + O(n)

CPS 100 3.27

Changing a linked list recursively
 Pass list to method, return altered list, assign to list

 Idiom for changing value parameters

list = change(list, “apple”);
public Node change(Node list, String key) {
  if (list != null) {
     list.next = change(list.next, key);
     if (list.info.equals(key)) return list.next;
     else                       return list;
  }
  return null;
 }
 What does this code do? How can we reason about it?

 Empty list, one-node list, two-node list, n-node list
 Similar to proof by induction


