
CPS 100 4.1

Solving Problems Recursively
 Recursion is an indispensable tool in a programmer’s toolkit

 Allows many complex problems to be solved simply
 Elegance and understanding in code often leads to better

programs: easier to modify, extend, verify (and sometimes
more efficient!!)

 Sometimes recursion isn’t appropriate, when it’s bad it can
be very bad---every tool requires knowledge and
experience in how to use it

 The basic idea is to get help solving a problem from
coworkers (clones) who work and act like you do
 Ask clone to solve a simpler but similar problem
 Use clone’s result to put together your answer

 Need both concepts: call on the clone and use the result

CPS 100 4.2

Print words entered, but backwards
 Can use an ArrayList, store all the words and print in reverse

order
 Probably the best approach, recursion works too
public void printReversed(Scanner s){
 if (s.hasNext()){ // reading succeeded?
 String word = s.next(); // store word
 printReversed(s); // print rest

 System.out.println(word);// print the word
 }
}

 The function printReversed reads a word, prints the word
only after the clones finish printing in reverse order
 Each clone has own version of the code, own word variable
 Who keeps track of the clones?
 How many words are created when reading N words?

• What about when ArrayList<String> used?

CPS 100 4.3

Exponentiation
 Computing xn means multiplying n numbers (or does it?)

 What’s the easiest value of n to compute xn?
 If you want to multiply only once, what can you ask a

clone?

public static double power(double x, int n){
 if (n == 0){

 return 1.0;
 }
 return x * power(x, n-1);
}

 What about an iterative version?

CPS 100 4.4

Faster exponentiation
 How many recursive calls are made to computer 21024?

 How many multiplies on each call? Is this better?

public static double power(double x, int n){
 if (n == 0) {
 return 1.0;
 }
 double semi = power(x, n/2);
 if (n % 2 == 0) {
 return semi*semi;
 }
 return x * semi * semi;
}

 What about an iterative version of this function?

CPS 100 4.5

Back to Recursion
 Recursive functions have two key attributes

 There is a base case, sometimes called the exit case, which
does not make a recursive call
• See print reversed, exponentiation

 All other cases make a recursive call, with some parameter
or other measure that decreases or moves towards the base
case
• Ensure that sequence of calls eventually reaches the base case
• “Measure” can be tricky, but usually it’s straightforward

 Example: sequential search in an array
 If first element is search key, done and return
 Otherwise look in the “rest of the array”
 How can we recurse on “rest of array”?

CPS 100 4.6

Thinking recursively
 Problem: find the largest element in an array

 Iteratively: loop, remember largest seen so far
 Recursive: find largest in [1..n), then compare to 0th element

public static double max(double[] a){
 double maxSoFar = a[0];
 for(int k=1; k < a.length; k++) {
 maxSoFar = Math.max(maxSoFar,a[k]);
 }
 return maxSoFar;
}

 In a recursive version what is base case, what is measure of
problem size that decreases (towards base case)?

CPS 100 4.7

Recursive Max
public static double recMax(double[] a, int index){
 if (index == a.length-1){ // last element, done
 return a[index];
 }
 double maxAfter = recMax(a,index+1);
 return Math.max(a[index],maxAfter);
}

 What is base case (conceptually)?
 Do we need variable maxAfter?

 We can use recMax to implement arrayMax as follows
 return recMax(a,0);

CPS 100 4.8

Recognizing recursion:
public static void change(String[] a, int first, int last){
 if (first < last) {

 String temp = a[first]; // swap a[first], a[last]
 a[first] = a[last];
 a[last] = temp;
 change(a, first+1, last-1);

 }
}
// original call (why?): change(a, 0, a.length-1);

 What is base case? (no recursive calls)
 What happens before recursive call made?
 How is recursive call closer to the base case?

CPS 100 4.9

More recursion recognition
public static int value(int[] a, int index){
 if (index < a.length) {

 return a[index] + value(a,index+1);
 }
 return 0;
}
// original call: int v = value(a,0);

 What is base case, what value is returned?
 How is progress towards base case realized?
 How is recursive value used to return a value?
 What if a is array of doubles, does anything change?

CPS 100 4.10

Analysis: Algorithms and Data Structures
 We need a vocabulary to discuss performance and to reason

about alternative algorithms and implementations
 It’s faster! It’s more elegant! It’s safer! It’s cooler!

 We need empirical tests and analytical/mathematical tools
 Given two methods, which is better? Run them to check.

• 30 seconds vs. 3 seconds, easy. 5 hours vs. 2 minutes, harder
• What if it takes two weeks to implement the methods?

 Use mathematics to analyze the algorithm,
 The implementation is another matter, cache, compiler

optimizations, OS, memory,…

CPS 100 4.11

Jaron Lanier (http://www.advanced.org/jaron)
Jaron Lanier is a computer scientist, composer,

visual artist, and author. He coined the term
‘Virtual Reality’ … he co-developed the first
implementations of virtual reality applications
in surgical simulation, vehicle interior
prototyping, virtual sets for television
production, and assorted other areas

"What's the difference between a bug and a
variation or an imperfection? If you think about
it, if you make a small change to a program, it
can result in an enormous change in what the
program does. If nature worked that way, the
universe would crash all the time."

Lanier has no academic degrees

CPS 100 4.12

Recursion and recurrences
 Why are some functions written recursively?

 Simpler to understand, but …
 Mt. Everest reasons

 Are there reasons to prefer iteration?
 Better optimizer: programmer/scientist v. compiler
 Six of one? Or serious differences

• “One person’s meat is another person’s poison”
• “To each his own”, “Chacun a son gout”, …

 Complexity (big-Oh) for iterative and recursive functions
 How to determine, estimate, intuit

CPS 100 4.13

What’s the complexity of this code?
 // first and last are integer indexes, list is List
 int lastIndex = first;
 Comparable pivot = list.get(first);
 for(int k=first+1; k <= last; k++){
 Comparable ko = list.get(k);
 if (ko.compareTo(pivot) <= 0){
 lastIndex++;
 Collections.swap(list,lastIndex,k);
 }
 }

 What is big-Oh cost of a loop that visits n elements of a vector?
 Depends on loop body, if body O(1) then …
 If body is O(n) then …
 If body is O(k) for k in [0..n) then …

CPS 100 4.14

FastFinder.findHelper
private Object findHelper(ArrayList<Comparable> list,
 int first, int last, int kindex){
 int lastIndex = first;
 Comparable pivot = list.get(first);
 for(int k=first+1; k <= last; k++){
 Comparable ko = list.get(k);
 if (ko.compareTo(pivot) <= 0){
 lastIndex++;
 Collections.swap(list,lastIndex,k);
 }
 }
 Collections.swap(list,lastIndex,first);
 if (lastIndex == kindex) return list.get(lastIndex);
 if (kindex < lastIndex)
 return findHelper(list,first,lastIndex-1,kindex);
 return findHelper(list,lastIndex+1,last,kindex);
}

CPS 100 4.15

Different measures of complexity
 Worst case

 Gives a good upper-bound on behavior
 Never get worse than this
 Drawbacks?

 Average case
 What does average mean?
 Averaged over all inputs? Assuming uniformly distributed

random data?
 Drawbacks?

 Best case
 Linear search, useful?

CPS 100 4.16

Multiplying and adding big-Oh
 Suppose we do a linear search then we do another one

 What is the complexity?
 If we do 100 linear searches?
 If we do n searches on a vector of size n?

 What if we do binary search followed by linear search?
 What are big-Oh complexities? Sum?
 What about 50 binary searches? What about n searches?

 What is the number of elements in the list (1,2,2,3,3,3)?
 What about (1,2,2, …, n,n,…,n)?
 How can we reason about this?

CPS 100 4.17

Helpful formulae
 We always mean base 2 unless otherwise stated

 What is log(1024)?
 log(xy) log(xy) log(2n) 2(log n)

 Sums (also, use sigma notation when possible)
 1 + 2 + 4 + 8 + … + 2k = 2k+1 – 1 =

 1 + 2 + 3 + … + n = n(n+1)/2 =

 a + ar + ar2 + … + arn-1 = a(rn - 1)/(r-1)=

•log(x) + log(y)
•y log(x)
•nlog(2) = n
•2(log n) = n

k

Σ
i=0

2i
n

Σ
i=1

i
n-1

Σ
i=0

ari

CPS 100 4.18

Recursion Review
 Recursive functions have two key attributes

 There is a base case, sometimes called the exit case, which
does not make a recursive call

 All other cases make recursive call(s), the results of these
calls are used to return a value when necessary
• Ensure that every sequence of calls reaches base case
• Some measure decreases/moves towards base case
• “Measure” can be tricky, but usually it’s straightforward

 Example: sequential search in an ArrayList
 If first element is search key, done and return
 Otherwise look in the “rest of the list”
 How can we recurse on “rest of list”?

CPS 100 4.19

Sequential search revisited
 What is complexity of sequential search? Of code below?

boolean search(ArrayList<Object> list,
 int first, Object target) {
 if (first >= list.size()) return false;
 else if (list.get(first).equals(target))
 return true;
 else return search(list,first+1,target);
}
 Why are there three parameters? Same name good idea?

boolean search(ArrayList list, Object target){
return search(list,0,target);

}

CPS 100 4.20

Why we study recurrences/complexity?
 Tools to analyze algorithms
 Machine-independent measuring methods
 Familiarity with good data structures/algorithms

 What is CS person: programmer, scientist, engineer?
scientists build to learn, engineers learn to build

 Mathematics is a notation that helps in thinking, discussion,
programming

CPS 100 4.21

Recurrences
 Summing Numbers

 int sum(int n)
 {
 if (0 == n) return 0;
 else return n + sum(n-1);
 }

 What is complexity? justification?
 T(n) = time to compute sum for n

 T(n) = T(n-1) + 1
 T(0) = 1

 instead of 1, use O(1) for constant time
 independent of n, the measure of problem size

CPS 100 4.22

Solving recurrence relations

 plug, simplify, reduce, guess, verify?

 T(n) = T(n-1) + 1
 T(0) = 1

 T(n) = T(n-k) + k find the pattern!
 Now, let k=n, then T(n) = T(0)+n = 1+n
 get to base case, solve the recurrence: O(n)

T(n-1) = T(n-1-1) + 1

T(n) = [T(n-2) + 1] + 1 = T(n-2)+2

T(n-2) = T(n-2-1) + 1

T(n) = [(T(n-3) + 1) + 1] + 1 = T(n-3)+3

CPS 100 4.23

Complexity Practice
 What is complexity of Build? (what does it do?)

 ArrayList<Integer> build(int n)
 {
 if (0 == n) return new ArrayList<Integer>(); // empty
 ArrayList<Integer> list = build(n-1);
 for(int k=0;k < n; k++){
 list.add(n);
 }
 return list;
 }

 Write an expression for T(n) and for T(0), solve.

CPS 100 4.24

Recognizing Recurrences
 Solve once, re-use in new contexts

 T must be explicitly identified
 n must be some measure of size of input/parameter

• T(n) is the time for quicksort to run on an n-element vector

T(n) = T(n/2) + O(1) binary search O()
T(n) = T(n-1) + O(1) sequential search O()
T(n) = 2T(n/2) + O(1) tree traversal O()
T(n) = 2T(n/2) + O(n) quicksort O()
T(n) = T(n-1) + O(n) selection sort O()

 Remember the algorithm, re-derive complexity

n
log n

n log n
n

n2

CPS 100 4.25

Eugene (Gene) Myers
 Lead computer

scientist/software engineer
at Celera Genomics (now at
Berkeley,now at …?)

 "What really astounds me is
the architecture of life. The
system is extremely
complex. It's like it was
designed." … "There's a
huge intelligence there."

