
CPS 100 9.1

Sorting: From Theory to Practice
 Why do we study sorting?

 Because we have to
 Because sorting is beautiful
 Example of algorithm analysis in a simple, useful setting

 There are n sorting algorithms, how many should we study?
 O(n), O(log n), …
 Why do we study more than one algorithm?

• Some are good, some are bad, some are very, very sad
• Paradigms of trade-offs and algorithmic design

 Which sorting algorithm is best?
 Which sort should you call from code you write?

CPS 100 9.2

Sorting out sorts
 Simple, O(n2) sorts --- for sorting n elements

 Selection sort --- n2 comparisons, n swaps, easy to code
 Insertion sort --- n2 comparisons, n2 moves, stable, fast
 Bubble sort --- n2 everything, slow, slower, and ugly

 Divide and conquer faster sorts: O(n log n) for n elements
 Quick sort: fast in practice, O(n2) worst case
 Merge sort: good worst case, great for linked lists, uses

extra storage for vectors/arrays
 Other sorts:

 Heap sort, basically priority queue sorting
 Radix sort: doesn’t compare keys, uses digits/characters
 Shell sort: quasi-insertion, fast in practice, non-recursive

CPS 100 9.3

Selection sort: summary
 Simple to code n2 sort: n2 comparisons, n swaps

void selectSort(String[] a) {
 int len = a.length;
 for(int k=0; k < len; k++){
 int mindex = getMinIndex(a,k,len);
 swap(a,k,mindex);
 }
}

 # comparisons:
 Swaps?
 Invariant:

Σ
k=1

n
k = 1 + 2 + … + n = n(n+1)/2 = O(n2)

Sorted, won’t move
final position

?????

CPS 100 9.4

Insertion Sort: summary
 Stable sort, O(n2), good on nearly sorted vectors

 Stable sorts maintain order of equal keys
 Good for sorting on two criteria: name, then age

void insertSort(String[] a){
 int k, loc; String elt;
 for(k=1; k < a.length; ++k) {
 elt = a[k];
 loc = k;
 // shift until spot for elt is found
 while (0 < loc && elt.compareTo(a[loc-1]) < 0) {
 a[loc] = a[loc-1]; // shift right
 loc=loc-1;
 }
 a[loc] = elt;
 }
} Sorted relative to

each other
?????

CPS 100 9.5

Bubble sort: summary of a dog
 For completeness you should know about this sort

 Really, really slow (to run), really really fast (to code)
 Can code to recognize already sorted vector (see insertion)

• Not worth it for bubble sort, much slower than insertion

void bubbleSort(String[] a)
{
 for(int j=a.length-1; j >= 0; j--) {
 for(int k=0; k < j; k++) {
 if (a[k] > a[k+1])
 swap(a,k,k+1);
 }
 }
}

 “bubble” elements down the vector/array

Sorted, in final
position

?????

CPS 100 9.6

Summary of simple sorts
 Selection sort has n swaps, good for “heavy” data

 moving objects with lots of state, e.g., …
• In C or C++ this is an issue
• In Java everything is a pointer/reference, so swapping is fast

since it's pointer assignment

 Insertion sort is good on nearly sorted data, it’s stable, it’s fast
 Also foundation for Shell sort, very fast non-recursive
 More complicated to code, but relatively simple, and fast

 Bubble sort is a travesty? But it's fast to code if you know it!
 Can be parallelized, but on one machine don’t go near it

(see quotes at end of slides)

CPS 100 9.7

Quicksort: fast in practice
 Invented in 1962 by C.A.R. Hoare, didn’t understand recursion

 Worst case is O(n2), but avoidable in nearly all cases
 In 1997 Introsort published (Musser, introspective sort)

• Like quicksort in practice, but recognizes when it will be bad
and changes to heapsort

void quick(String[], int left, int right)
{
 if (left < right) {
 int pivot = partition(a,left,right);
 quick(a,left,pivot-1);
 quick(a,pivot+1, right);
 }
}
 Recurrence? <= X > XX

pivot index

CPS 100 9.8

Partition code for quicksort

left

 Easy to develop partition

int partition(String[] a,
 int left, int right)
{
 string pivot = a[left];
 int k, pIndex = left;
 for(k=left+1, k <= right; k++) {
 if (a[k].compareTo(pivot) <= 0){
 pIndex++;
 swap(a,k,pIndex);
 }
 }
 swap(a,left,pIndex);
}

 loop invariant:
 statement true each time loop

test is evaluated, used to verify
correctness of loop

 Can swap into a[left] before loop
 Nearly sorted data still ok

??????????????

<= > ???

<= pivot > pivot

pIndex
left right

right

left right

what we want

what we have

invariant

pIndex k

CPS 100 9.9

Analysis of Quicksort
 Average case and worst case analysis

 Recurrence for worst case: T(n) =
 What about average?

 Reason informally:
 Two calls vector size n/2
 Four calls vector size n/4
 … How many calls? Work done on each call?

 Partition: typically find middle of left, middle, right, swap, go
 Avoid bad performance on nearly sorted data

 In practice: remove some (all?) recursion, avoid lots of “clones”

T(n-1) + T(1) + O(n)

T(n) = 2T(n/2) + O(n)

CPS 100 9.10

Tail recursion elimination
 If the last statement is a recursive call, recursion can be replaced

with iteration
 Call cannot be part of an expression
 Some compilers do this automatically

void foo(int n) void foo2(int n)
{ {
 if (0 < n) { while (0 < n) {
 System.out.println(n); System.out.println(n);
 foo(n-1); n = n-1;
 } }
} }

 What if print and recursive call switched?
 What about recursive factorial? return n*factorial(n-1);

CPS 100 9.11

Merge sort: worst case O(n log n)
 Divide and conquer --- recursive sort

 Divide list/vector into two halves
• Sort each half
• Merge sorted halves together

 What is complexity of merging two sorted lists?
 What is recurrence relation for merge sort as described?
T(n) =

 What is advantage of array over linked-list for merge sort?
 What about merging, advantage of linked list?
 Array requires auxiliary storage (or very fancy coding)

T(n) = 2T(n/2) + O(n)

CPS 100 9.12

Merge sort: lists or arrays or …
 Mergesort for arrays

void mergesort(String[] a, int left, int right)
{
 if (left < right) {
 int mid = (right+left)/2;
 mergesort(a, left, mid);
 mergesort(a, mid+1, right);
 merge(a,left,mid,right);
 }
}
 What’s different when linked lists used?

 Do differences affect complexity? Why?

 How does merge work?

CPS 100 9.13

Merge for LinkedList
 public static LinkedList<String>
 merge(LinkedList<String> a,
 LinkedList<String> b) {
 LinkedList<String> result =
 new LinkedList<String>();
 while (a.size() != 0 && b.size() != 0){
 String as = a.getFirst();
 String bs = b.getFirst();
 if (as.compareTo(bs) <= 0){
 result.add(a.remove());
 }
 else {
 result.add(b.remove());
 }
 }
 // what's missing here??

CPS 100 9.14

Merge for linked list (lower case)
 public static Node merge(Node a, Node b) {
 Node result = new Node("dummy");
 Node last = result;
 while (a != null && b != null){
 String as = a.info;
 String bs = b.info;
 if (as.compareTo(bs) <= 0){
 last.next = a;
 a = a.next;
 last = last.next; last = null;
 }
 else {
 // similar code for b
 }
 }
 // what's missing here??
 // what's returned?

CPS 100 9.15

Merge for arrays
 Array code for merge isn’t pretty, but it’s not hard

 Mergesort itself is elegant

void merge(String[] a,
 int left, int middle, int right)
// pre: left <= middle <= right,
// a[left] <= … <= a[middle],
// a[middle+1] <= … <= a[right]
// post: a[left] <= … <= a[right]

 Need extra storage, can't easily merge in place
 Can alternate between arrays: one merged into, then swap

CPS 100 9.16

Summary of O(n log n) sorts
 Quicksort is relatively straight-forward to code, very fast

 Worst case is very unlikely, but possible, therefore …
 But, if lots of elements are equal, performance will be bad

• One million integers from range 0 to 10,000
• How can we change partition to handle this?

 Merge sort is stable, it’s fast, good for linked lists, harder to code?
 Worst case performance is O(n log n), compare quicksort
 Extra storage for array/vector

 Heapsort, more complex to code, good worst case, not stable
 Basically heap-based priority queue in a vector

CPS 100 9.17

Sorting in practice
 Rarely will you need to roll your own sort, but when you do

…
 What are key issues?

 If you use a library sort, you need to understand the interface
 In C++ we have STL

• STL has sort, and stable_sort

 In C generic sort is complex to use because arrays are ugly
 In Java guarantees and worst-case are important

• Why won’t quicksort be used?

 Comparators permit sorting criteria to change simply

CPS 100 9.18

Non-comparison-based sorts
 lower bound: Ω(n log n) for

comparison based sorts (like
searching lower bound)

 bucket sort/radix sort are not-
comparison based, faster
asymptotically and in practice

 sort a vector of ints, all ints in
the range 1..100, how?
 (use extra storage)

 radix: examine each digit of
numbers being sorted
 One-pass per digit
 Sort based on digit

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

23 34 56 25 44 73 42 26 10 16

563423
44

2542

73

16

10
26

10 42 23 73 34 44 25 56 26 16

10 4223 34
4425

56

26
16

10 16 23 25 26 34 42 44 56 73

73

CPS 100 9.19

11/08/77

CPS 100 9.20

17 Nov 75

Not needed

Can be tightened
considerably

CPS 100 9.21

Jim Gray (Turing 1998)

 Bubble sort is a good
argument for analyzing
algorithm performance.
It is a perfectly correct
algorithm. But it's
performance is among
the worst imaginable.
So, it crisply shows the
difference between
correct algorithms and
good algorithms.

(italics ola’s)

CPS 100 9.22

Brian Reid (Hopper Award 1982)

 Feah. I love bubble
sort, and I grow weary
of people who have
nothing better to do
than to preach about it.
Universities are good
places to keep such
people, so that they
don't scare the general
public.

(continued)

CPS 100 9.23

Brian Reid (Hopper 1982)
 I am quite capable of squaring N with or without a calculator,

and I know how long my sorts will bubble. I can type every
form of bubble sort into a text editor from memory. If I am
writing some quick code and I need a sort quick, as opposed to
a quick sort, I just type in the bubble sort as if it were a
statement. I'm done with it before I could look up the data
type of the third argument to the quicksort library.

I have a dual-processor 1.2 GHz Powermac and it sneers at
your N squared for most interesting values of N. And my
source code is smaller than yours.

Brian Reid
who keeps all of his bubbles sorted anyhow.

CPS 100 9.24

Niklaus Wirth (Turing award 1984)
 I have read your article and share your

view that Bubble Sort has hardly any
merits. I think that it is so often
mentioned, because it illustrates quite
well the principle of sorting by
exchanging.

 I think BS is popular, because it fits
well into a systematic development of
sorting algorithms. But it plays no
role in actual applications. Quite in
contrast to C, also without merit (and
its derivative Java), among
programming codes.

CPS 100 9.25

Guy L. Steele, Jr. (Hopper ’88)
 (Thank you for your fascinating

paper and inquiry. Here are some off-
the-cuff thoughts on the subject.)

 I think that one reason
for the popularity of
Bubble Sort is that it is
easy to see why it
works, and the idea is
simple enough that one
can carry it around in
one's head …

continued
CPS 100 9.26

Guy L. Steele, Jr.

 As for its status today, it may be an example of
that phenomenon whereby the first widely popular
version of something becomes frozen as a common
term or cultural icon. Even in the 1990s, a comic-
strip bathtub very likely sits off the floor on claw
feet.

 … it is the first thing that leaps to mind, the thing
that is easy to recognize, the thing that is easy to
doodle on a napkin, when one thinks generically or
popularly about sort routines.

