Recognizing Common Recurrences

- Below are some algorithms and recurrence relation encountered
 - Solve once, re-use in new contexts
 - T must be explicitly identified
 - n must be some measure of size of input/parameter
 - T(n) is the time for quicksort to run on an n-element vector

 \[
 \begin{align*}
 T(n) &= T(n/2) + O(1) & \text{binary search} & O(\log n) \\
 T(n) &= T(n-1) + O(1) & \text{sequential search} & O(n) \\
 T(n) &= 2T(n/2) + O(1) & \text{tree traversal} & O(n) \\
 T(n) &= 2T(n/2) + O(n) & \text{quicksort} & O(n \log n) \\
 T(n) &= T(n-1) + O(n) & \text{selection sort} & O(n^2) \\
 \end{align*}
 \]

- Remember the algorithm, re-derive complexity

Big Oh for Quickselect

- Quickselect finds the Nth Smallest item in a list
 - For example
 - \{ 13, 14, 11, 17, 15, 19, 12, 16, 18, 17 \}
 - 4th smallest is 14. Program partially sorts so that it ends up in the 4th index position (3).
 - Code on next slide
 - Has much in common with Quicksort
 - What are the differences?

- Recurrence Relation
 - T(0) = 1
 - T(N) = T(N/2) + N
 - What is Big Oh?

Quickselect

- Partially reorders list so that kindex smallest is in proper position

```java
void quickselect(String[] list, int first, int last, int kIndex){
    int k, lastIndex = first;
    String pivot = list[first];
    for(k = first+1; k <= last; k++) {
        if (list[k].compareTo(pivot) <= 0) {
            lastIndex++;
            swap(list, lastIndex, k);
        }
    }
    swap(list, lastIndex, first);
    if (lastIndex == kIndex) return;
    if (kIndex < lastIndex)
        quickselect(list, first, lastIndex-1, kIndex);
    else
        quickselect(list, lastIndex+1, last, kIndex);
}
```

Solving Quickselect Big Oh

- Plug, simplify, reduce, guess, verify?

\[
\begin{align*}
T(n) &= T(n/2) + n \\
T(1) &= 1 \\
T(n/2) &= T(n/2/2) + n/2 = T(n/4) + n/2 \\
T(n) &= \left[T(n/4) + n/2\right] + n = T(n/4) + 3n/2 \\
T(n/4) &= T(n/4/2) + n/4 = T(n/8) + n/4 \\
T(n) &= \left[T(n/8) + n/4\right] + 3n/2 = T(n/8) + 7n/4 \\
T(n) &= T(n/2^k) + (2 - 1/2^k)n \\
\text{find the pattern!}
\end{align*}
\]

Now, let k=log n, then T(n) = T(0) + 2n = 1+2n

- Get to base case, solve the recurrence: O(n)
Helpful formulae

- We always mean base 2 unless otherwise stated
 - What is \(\log(1024) \)?
 - \(\log(x) + \log(y) = \log(xy) \)
 - \(\log(x^n) = n \log(x) \)
 - \(2^{\log n} = n \)

- Sums (also, use sigma notation when possible)
 - \[1 + 2 + 4 + 8 + \ldots + 2^k = 2^{k+1} - 1 = \sum_{i=0}^{k} 2^i \]
 - \[1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} = \sum_{i=1}^{n} i \]
 - \[a + ar + ar^2 + \ldots + ar^{n-1} = \frac{a(r^n - 1)}{r-1} = \sum_{i=0}^{n-1} ar^i \]

Towers of Hanoi

```java
void hanoi(String from, String to, String via, int n)
// Pre: n > 0 disks in pile "from" to be moved to pile "to"
// with pile "via" available for intermediate storage. All
// piles so that disk n always above disk n+k where k > 0.
// Post: Messages generated to show how to move disks to pile "to"
// with intermediate use of all piles but only one disk moved at
// a time and at all times for all n, disk n above disk n+k where
// k > 0. (I.e., at no time is a larger disk above a smaller disk
// where smaller disks have smaller numbers than larger disks.)
{
    if (n == 1) // base case: only one disk in pile
        System.out.println("Move disk 1 from " + from + " to " + to);
    else {
        hanoi(from, via, to, n-1); // move disks above to alternate
        System.out.println("Move disk " + n + " from " + from + " to "
                         + to);
        hanoi(via, to, from, n-1); // move disk above to target
    }
}
```

Solving Towers of Hanoi Big Oh

- Recurrence relation:
 - \[T(n) = 2T(n-1) + 1 \]
 - \[T(0) = 1 \]
 - \[T(n-1) = 2T(n-1-1) + 1 = 2T(n-2) + 1 \]
 - \[T(n) = 2[2T(n-2) + 1] + 1 = 4T(n-2) + 3 \]
 - \[T(n-2) = 2T(n-2-1) + 1 = 2T(n-3) + 1 \]
 - \[T(n) = 4[2T(n-3) + 1] + 3 = 8T(n-3) + 7 \]
 - \[T(n) = 2^kT(n-k) + 2^k - 1 \] find the pattern!
 - Now, let \(k=n \), then \[T(n) = 2^nT(0) + 2^n - 1 = 2^{n+1} - 1 \]
 - Get to base case, solve the recurrence: \(O(2^n) \)
 - \(\text{Oh – Oh!} \)