Sorting: From Theory to Practice

- Why do we study sorting?
 - Because we have to
 - Because sorting is beautiful
 - Example of algorithm analysis in a simple, useful setting

- There are n sorting algorithms, how many should we study?
 - $O(n), O(\log n), \ldots$
 - Why do we study more than one algorithm?
 - Some are good, some are bad, some are very, very sad
 - Paradigms of trade-offs and algorithmic design
 - Which sorting algorithm is best?
 - Which sort should you call from code you write?
Sorting out sorts

- **Simple, O(n^2) sorts --- for sorting n elements**
 - Selection sort --- n^2 comparisons, n swaps, *easy to code*
 - Insertion sort --- n^2 comparisons, n^2 moves, *stable*, fast on nearly sorted vectors: O(n)
 - Bubble sort --- n^2 everything, *slower*

- **Divide and conquer faster sorts: O(n log n) for n elements**
 - Quick sort: *fast* in practice, O(n^2) *worst case*
 - Merge sort: good worst case, great for linked lists, *stable*, uses extra storage for vectors/arrays

- **Other sorts:**
 - Heap sort, basically priority queue sorting
 - Radix sort: doesn’t compare keys, uses digits/characters
 - Shell sort: quasi-insertion, fast in practice, non-recursive
Selection sort: summary

- Simple to code n^2 sort: n^2 comparisons, n swaps

```java
void selectSort(String[] a) {
    for (int k=0; k < a.length; k++) {
        int minIndex = findMin(a, k);
        swap(a, k, minIndex);
    }
}
```

- # comparisons: $\sum_{k=1}^{n} k = 1 + 2 + \ldots + n = n(n+1)/2 = O(n^2)$
 - Swaps?
 - Invariant:

| Sorted, won't move final position | ?????
Insertion Sort: summary

- Stable sort, $O(n^2)$ -- ($O(n)$ on nearly sorted vectors!)
 - Stable sorts maintain order of equal keys
 - Good for sorting on two criteria: name, then age

```java
void insertSort(String[] a) {
    int k, loc; string elt;
    for (k=1; k < a.length; k++) {
        elt = a[k];
        loc = k;
        // shift until spot for elt is found
        while (0 < loc && elt.compareTo(a[loc-1]) < 0) {
            a[loc] = a[loc-1]; // shift right
            loc=loc-1;
        }
        a[loc] = elt;
    }
}
```

| Sorted relative to each other | ?????
Bubble sort: summary of a dog

- For completeness you should know about this sort
 - Few, if any, redeeming features. Really slow, really
 - Can code to recognize already sorted vector (see insertion)
 - Not worth it for bubble sort, much slower than insertion

```java
void bubbleSort(String[] a) {
    for (int j = a.length - 1; j >= 0; j--) {
        for (int k = 0; k < j; k++) {
            if (a[k] > a[k+1])
                swap(a, k, k+1);
        }
    }
}
```

- “bubble” elements down the vector/array

<table>
<thead>
<tr>
<th>??????</th>
<th>Sorted, in final position</th>
</tr>
</thead>
</table>

CompSci 100E
Summary of simple sorts

- **Selection sort has n swaps, good for “heavy” data**
 - Moving objects with lots of state, e.g., ...
 - In C or C++ this is an issue
 - In Java everything is a pointer/reference, so swapping is fast since it's pointer assignment

- **Insertion sort is good on nearly sorted data, it’s stable, it’s fast**
 - Also foundation for Shell sort, very fast non-recursive
 - More complicated to code, but relatively simple, and fast

- **Bubble sort is a travesty? But it's fast to code if you know it!**
 - Can be parallelized, but on one machine don’t go near it (see quotes at end of slides)
Quicksort: fast in practice

- Invented in 1962 by C.A.R. Hoare, didn’t understand recursion
 - Worst case is $O(n^2)$, but avoidable in nearly all cases
 - In 1997 Introsort published (Musser, introspective sort)
 - Like quicksort in practice, but recognizes when it will be bad and changes to heapsort

```java
void quick(String[], int left, int right) {
    if (left < right) {
        int pivot = partition(a, left, right);
        quick(a, left, pivot-1);
        quick(a, pivot+1, right);
    }
}
```

- Recurrence?

<table>
<thead>
<tr>
<th><= X</th>
<th>X</th>
<th>> X</th>
</tr>
</thead>
<tbody>
<tr>
<td>pivot</td>
<td>index</td>
<td></td>
</tr>
</tbody>
</table>
Partition code for quicksort

Easy to develop partition

```java
int partition(String[] a, int left, int right)
{
    String pivot = a[left];
    int k, pIndex = left;
    for (k=left+1, k <= right; k++){
        if (a[k].compareTo(pivot) <= 0){
            pIndex++;
            swap(a,k,pIndex);
        }
    }
    swap(a,left,pIndex);
    return pIndex;
}
```

Loop invariant:
- statement true each time loop test is evaluated, used to verify correctness of loop
- Can swap into a[left] before loop
- Nearly sorted data still ok
Analysis of Quicksort

- **Average case and worst case analysis**
 - Recurrence for worst case: \[T(n) = T(n-1) + T(1) + O(n) \]
 - What about average? \[T(n) = 2T(n/2) + O(n) \]

- **Reason informally:**
 - Two calls vector size \(n/2 \)
 - Four calls vector size \(n/4 \)
 - … How many calls? Work done on each call?

- **Partition:** typically find middle of left, middle, right, swap, go
 - Avoid bad performance on nearly sorted data

- **In practice:** remove some (all?) recursion, avoid lots of “clones”
Tail recursion elimination

- If the last statement is a recursive call, recursion can be replaced with iteration
 - Call cannot be part of an expression
 - Some compilers do this automatically

```java
void foo(int n)
{
  if (0 < n) {
    System.out.println(n);
    foo(n-1);
  }
}

void foo2(int n)
{
  while (0 < n) {
    System.out.println(n);
    n = n-1;
  }
}
```

- What if print and recursive call switched?
- What about recursive factorial? `return n*factorial(n-1);`
Merge sort: worst case $O(n \log n)$

- **Divide and conquer --- recursive sort**
 - Divide list/vector into two halves
 - Sort each half
 - Merge sorted halves together
 - What is complexity of merging two sorted lists?
 - What is recurrence relation for merge sort as described?
 $$T(n) = 2T(n/2) + O(n)$$

- **What is advantage of array over linked-list for merge sort?**
 - What about merging, advantage of linked list?
 - Array requires auxiliary storage (or very fancy coding)
Merge sort: lists or vectors

- Mergesort for vectors

```java
void mergesort(String[] a, int left, int right) {
    if (left < right) {
        int mid = (right+left)/2;
        mergesort(a, left, mid);
        mergesort(a, mid+1, right);
        merge(a,left,mid,right);
    }
}
```

- What’s different when linked lists used?
 - Do differences affect complexity? Why?

- How does merge work?
Mergesort continued

- Array code for merge isn’t pretty, but it’s not hard
 - Mergesort itself is elegant

```java
void merge(String[] a,
           int left, int middle, int right)
// pre:  left <= middle <= right,
//      a[left] <= ... <= a[middle],
//      a[middle+1] <= ... <= a[right]
// post: a[left] <= ... <= a[right]
```

- Why is this prototype potentially simpler for linked lists?
 - What will prototype be? What is complexity?
void merge(String[] a, int left, int middle, int right) {
 String[] b = new String[right - left + 1];
 int k = 0, kl = left, kr = middle + 1;
 for (; kl <= middle && kr <= right; k++){
 if (a[kl].compareTo(a[kr]) <= 0)
 b[k] = a[kl++];
 else
 b[k] = a[kr++];
 }
 for (; kl <= middle; kl++)
 b[k++] = a[kl];
 for (; kr <= right; kr++)
 b[k++] = a[kr];
 for (k = 0; k < b.length; k++)
 a[left+k] = b[k];
}
Summary of O(n log n) sorts

- **Quicksort** is relatively straight-forward to code, very fast
 - Worst case is very unlikely, but possible, therefore …
 - But, if lots of elements are equal, performance will be bad
 - One million integers from range 0 to 10,000
 - How can we change partition to handle this?

- **Merge sort** is stable, it’s fast, good for linked lists, harder to code?
 - Worst case performance is O(n log n), compare quicksort
 - Extra storage for array/vector

- **Heapsort**, more complex to code, good worst case, not stable
 - Basically heap-based priority queue in a vector
Sorting in practice

- Rarely will you need to roll your own sort, but when you do ...
 - What are key issues?

- If you use a library sort, you need to understand the interface
 - In C++ we have STL
 - STL has `sort`, and `stable_sort`
 - In C the generic sort is complex to use because arrays are ugly
 - In Java `guarantees` and `worst-case` are important
 - Why won’t quicksort normally be used?
 - When is it used? Why?

- Comparators permit sorting criteria to change simply