On the Limits of Computing

- **Reasons for Failure**
 1. Runs *too long*
 - Real time requirements
 - Predicting yesterday's weather
 2. Non-computable!
 3. Don't know the algorithm

- **Complexity, N**
 - Time
 - Space

- **Tractable and Intractable**
On the Limits of Computing

- **Intractable Algorithms**
 - Computer "crawls" or seems to come to halt for large N
 - Large problems *essentially unsolved*
 - May never be able to compute answer for some obvious questions

- **Chess**
 - Here N is number of moves looking ahead
 - We *have* an Algorithm!
 - Layers of look-ahead: If I do this, then he does this,
 - Problem Solved (?!)
 - Can Represent Possibilities by Tree
 - Assume 10 Possibilities Each Move
 - $t = A \times 10^N$ or $O(A^N)$

- **Exponential !!!**
Exponential Algorithms

- Recognizing Exponential Growth
 - Things get **BIG** very rapidly
 - Numbers seem to **EXPLODE**
 - **KEY:** at each *added* step, work *multiplies* rather than *adds*
- Exponential = $O(A^N)$ = Intractable
- Traveling Salesperson Example
 - Visit N Cities in *Optimal* Order
 - Optimize for minimum:
 - Time
 - Distance
 - Cost
- N factorial (N!) Possibilities
- N! is (very) roughly N^N
 - Sterling’s approximation: $N! = \sqrt{2\pi N} \times (N/e)^N$
- Typical of some very practical problems
Traveling Salesperson Examples

- **3 cities**: $2! = 2$ possible routes (1 of interest)
 - abc
 - acb
- **4 cities**: $3! = 6$ possible routes (3 of interest)
 - abcd
 - abdc
 - acbd
 - acdb
 - acdb
 - adbc
 - adcb

- *(Only half usually of interest because just reverse of another path)*
Traveling Salesperson Examples

5 cities 4! = 24 possible routes

- abcde
- abced
- abdce
- abdec
- abedc
- acbde
- acbed
- acdbe
- acdecb
- acebd
- acedbb

(12 of interest)

- adbce
- adbce
- adcbe
- adcecb
- adebc
- adecbe
- aedbc
Towers of Hanoi

<table>
<thead>
<tr>
<th>N</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>.17 sec</td>
</tr>
<tr>
<td>10</td>
<td>5.62 sec</td>
</tr>
<tr>
<td>15</td>
<td>3.00 min</td>
</tr>
<tr>
<td>20</td>
<td>1.6 hour</td>
</tr>
<tr>
<td>25</td>
<td>2.13 day</td>
</tr>
<tr>
<td>30</td>
<td>68.23 day</td>
</tr>
<tr>
<td>35</td>
<td>5.98 year</td>
</tr>
<tr>
<td>40</td>
<td>191.3 year</td>
</tr>
<tr>
<td>45</td>
<td>6120 year</td>
</tr>
<tr>
<td>50</td>
<td>196 K year</td>
</tr>
<tr>
<td>55</td>
<td>6.27 M year</td>
</tr>
<tr>
<td>60</td>
<td>201 M year</td>
</tr>
<tr>
<td>65</td>
<td>6.42 G year</td>
</tr>
<tr>
<td>70</td>
<td>205 G year</td>
</tr>
</tbody>
</table>

\[t = 0.00549 \times 2^N \]
(for a very old PC)

What would a faster computer do for these numbers?
Intractable Algorithms

- Other Games
- More hardware not the answer!
- Predicting Yesterday's Weather
- Actual Examples for Time Complexity
Existence of Noncomputable Functions

- Approach
 - Matching up Programs and Functions
 - E.g., assume 3 functions, only 2 programs
 - Without details, conclude one function has no program

- Have: *Uncountable Infinity of Functions Mapping int to int*
 - How can we show that is true?
 - Functions can be seen as columns in tables
 - Put all functions into a huge (*infinite*) table
 - Show that even that cannot hold them all
 - *Can you identify the functions in the following table?*
Table of All Integer to Integer Functions

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>6</th>
<th>0</th>
<th>0</th>
<th>8</th>
<th>2</th>
<th>1</th>
<th>4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>6</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>16</td>
<td>3</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>10</td>
<td>5</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>12</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>36</td>
<td>8</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>49</td>
<td>14</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>14</td>
<td>13</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>16</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>64</td>
<td>21</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>81</td>
<td>18</td>
<td>14</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>18</td>
<td>34</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
A Function *NOT* in this (inclusive?) Table

<table>
<thead>
<tr>
<th></th>
<th>1+1</th>
<th>1</th>
<th>2</th>
<th>6</th>
<th>0</th>
<th>0</th>
<th>8</th>
<th>2</th>
<th>1</th>
<th>4</th>
<th>.</th>
<th>.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4+1</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>6+1</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>10</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>8</td>
<td>9+1</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>16</td>
<td>3</td>
<td>13</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>1+1</td>
<td>0</td>
<td>8</td>
<td>10</td>
<td>5</td>
<td>16</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>12</td>
<td>11</td>
<td>1</td>
<td>1+1</td>
<td>8</td>
<td>36</td>
<td>8</td>
<td>19</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>7</td>
<td>49</td>
<td>14</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>8+114</td>
<td>13</td>
<td>22</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>16</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>64+121</td>
<td>25</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>9</td>
<td>81</td>
<td>18</td>
<td>14</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>18</td>
<td>34+128</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>20</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>100</td>
<td>55</td>
<td>31+1</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

...
Existence of Noncomputable Functions

- **All Programs Can be Ordered** (thus *Countable*)
 - By size, shortest program first
 - Just use alphabetical order

- **Try to Draw Lines Between Functions and Programs**
 - Could draw lines from every program to every function
 - But, have proved functions uncountable...
 - Thus, There Must be Functions With **NO** Programs!

- **Hard to come up with function that computer can't produce**
 - Possible example: *true* random generator
 (No algorithm can produce truly random number sequence)
 - Use Table
 - Program must be of finite size; Requires infinite table
Noncomputable Programs

- Programs that Read Programs
 - What programs have we used that read in programs?
 - Express programs as a single string (formatting messed up)
 - Therefore, could write program to see if there is an `if` statement in the program: answers YES or NO
 - How about, *Does program halt?*
 - Lack of `while` (and functions) guarantees a halt
 - Not very sophisticated
 - *Not Halting for All Possible Inputs* is usually considered a Bug

- Solving the Halting Problem
 - Write specific code to check out more complicated cases
 - Gets more and more involved...
The Halting Problem: Does it Halt?

- Consider Following Program: *Does it halt for all input?*

 // input an integer value for k
 while (k > 1)
 {
 if (((k/2) * 2 == k)) // is k even?
 k = k / 2;
 else
 k = 3 * k + 1;
 }

- Try It!

 - e.g. 17: 52 26 13, 40 20 10 5, 16 8 4 2 1
 - For a long time, no one knew whether this quit for all inputs.
Mathematicians have proven that no one, finite program can check this property for all possible programs.

Examples of non-computable problems:

- Equivalence: Define by $same\ input > same\ output$
- Use variation of above program; not sure it ends
- Cannot generally prove equivalence

Use Proof by Contradiction (Indirect Proof)

Proving non-computability:

- Sketch of proof
Noncomputability Proof

- **Assume Existence of Function** \texttt{halt}:
 \[
 \text{String } \texttt{halt}(\text{String } p, \text{ String } x);
 \]
 - Inputs: \(p = \text{program}, \ x = \text{input data} \)
 - Returns: "Halts"
 - or "Does not halt"

- **Can now write**:
 \[
 \text{String } \texttt{selfhalt}(\text{String } p);
 \]
 - Inputs: \(p = \text{program} \)
 - Returns: "Halts on self"
 - or "Does not halt on self"
 - Uses: \(\texttt{halt}(p, \ p); \)
 - i.e.: asking if halts when program \(p \) uses \textit{itself} as data
Noncomputability Proof.2

Now write function contrary:

```java
void contrary()
{
    TextField program = new TextField(1000);
    String p, answer;
    p = program.getText();
    answer = selfhalt(p);
    if (answer.equals("Halts on self"))
    {
        while (true)     // infinite loop
            answer = "x";
    }
    else
        return;       // i.e., halts
}

"Feed it" this program.
```
Noncomputability Proof.3

- Paradox!
 - If \texttt{halt} program decides it halts, it goes into infinite loop and goes on forever
 - If \texttt{halt} program decides it doesn't halt, it quits immediately
- Therefore \texttt{halt} cannot exist!

- Whole classes of programs on program behavior are non-computable
 - Equivalence
 - Many other programs that deal with the \textit{behavior} of a program
Living with Noncomputability

- What Does It All Mean?
 - Not necessarily a very tough constraint unless you get “too greedy”.
 - Programs can't do everything.
 - Beware of people who say they can!