
Memory Hierarchy—Improving Performance

Professor Alvin R. Lebeck
Computer Science 220

Fall 2006

2© Alvin R. Lebeck 2006

Admin

• Homework #4 Due November 2nd

• Work on Projects
• Midterm

– Max 98
– Min 50
– Mean 80

• Read NUCA paper

3© Alvin R. Lebeck 2006

Review: ABCs of caches

• Associativity
• Block size
• Capacity
• Number of sets S = C/(BA)
• 1-way (Direct-mapped)

– A = 1, S = C/B

• N-way set-associative
• Fully associativity

– S = 1, C = BA

• Know how a specific piece of data is found
– Index, tag, block offset

4© Alvin R. Lebeck 2006

Write Policies
• We know about write-through vs. write-back
• Assume: a 16-bit write to memory location 0x00

causes a cache miss.
• Do we change the cache tag and update data in the

block?
Yes: Write Allocate
No: Write No-Allocate

• Do we fetch the other data in the block?
Yes: Fetch-on-Write (usually do write-allocate)
No: No-Fetch-on-Write

• Write-around cache
– Write-through no-write-allocate

5© Alvin R. Lebeck 2006

Sub-block Cache (Sectored)
• Sub-block:

– Share one cache tag between all sub-blocks in a block
– Each sub-block within a block has its own valid bit
– Example: 1 KB Direct Mapped Cache, 32-B Block, 8-B Sub-block

» Each cache entry will have: 32/8 = 4 valid bits

• Miss: only the bytes in that sub-block are brought in.
– reduces cache fill bandwidth (penalty).

0
1
2
3

:

Cache Data

:

SB
0’

s V
 B

it

:
31

Cache Tag SB
1’

s V
 B

it

:

SB
2’

s V
 B

it

:

SB
3’

s V
 B

it

:

Sub-block0Sub-block1Sub-block2Sub-block3

: B0B7: B24B31

Byte 992Byte 1023

CPS 220 6© Alvin R. Lebeck 2006

Review: Four Questions for Memory Hierarchy
Designers

• Q1: Where can a block be placed in the upper level?
(Block placement)

– Fully Associative, Set Associative, Direct Mapped

• Q2: How is a block found if it is in the upper level?
(Block identification)
– Tag/Block

• Q3: Which block should be replaced on a miss?
(Block replacement)

– Random, LRU

• Q4: What happens on a write?
(Write strategy)

– Write Back or Write Through (with Write Buffer)

CPS 220 7© Alvin R. Lebeck 2006

Cache Performance

CPU time = (CPU execution clock cycles + Memory stall
clock cycles) x clock cycle time

Memory stall clock cycles = (Reads x Read miss rate x
Read miss penalty + Writes x Write miss rate x Write
miss penalty)

Memory stall clock cycles = Memory accesses x Miss
rate x Miss penalty

CPS 220 8© Alvin R. Lebeck 2006

Cache Performance

CPUtime = IC x (CPIexecution + (Mem accesses per
instruction x Miss rate x Miss penalty)) x Clock cycle
time

hits are included in CPIexecution

Misses per instruction = Memory accesses per
instruction x Miss rate

CPUtime = IC x (CPIexecution + Misses per instruction x
Miss penalty) x Clock cycle time

9© Alvin R. Lebeck 2006

Example

• Miss penalty 50 clocks
• Miss rate 2%
• Base CPI 2.0
• 1.33 references per instruction
• Compute the CPUtime

• CPUtime = IC x (2.0 + (1.33 x 0.02 x 50)) x Clock
• CPUtime = IC x 3.33 x Clock
• So CPI increased from 2.0 to 3.33 with a 2% miss rate

10© Alvin R. Lebeck 2006

Example 2

• Two caches: both 64KB, 32 byte blocks, miss penalty
70ns, 1.3 references per instruction, CPI 2.0 w/ perfect
cache

• direct mapped
– Cycle time 2ns
– Miss rate 1.4%

• 2-way associative
– Cycle time increases by 10%
– Miss rate 1.0%

• Which is better?
– Compute average memory access time
– Compute CPU time

11© Alvin R. Lebeck 2006

Example 2 Continued

• Ave Mem Acc Time =
Hit time + (miss rate x miss penalty)

– 1-way: 2.0 + (0.014 x 70) = 2.98ns
– 2-way: 2.2 + (0.010 x 70) = 2.90ns

• CPUtime = IC x CPIexec x Cycle
– CPIexec = CPIbase + ((memacc/inst) x Miss rate x miss penalty)
– Note: miss penalty x cycle time = 70ns

– 1-way: IC x ((2.0 x 2.0) + (1.3x0.014x70)) = 5.27 x IC
– 2-way: IC x ((2.0 x 2.2) + (1.3x0.010x70)) = 5.31 x IC

CPS 220 12© Alvin R. Lebeck 2006

Review: Cache Performance

CPUtime = IC x (CPIexecution + Mem accesses per
instruction x Miss rate x Miss penalty) x Clock cycle
time

hits are included in CPIexecution

Misses per instruction = Memory accesses per
instruction x Miss rate

CPUtime = IC x (CPIexecution + Misses per instruction x
Miss penalty) x Clock cycle time

CPS 220 13© Alvin R. Lebeck 2006

Improving Cache Performance

Ave Mem Acc Time =
Hit time + (miss rate x miss penalty)

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

CPS 220 14© Alvin R. Lebeck 2006

Reducing Misses

• Classifying Misses: 3 Cs
– Compulsory—The first access to a block is not in the cache,

so the block must be brought into the cache. These are also
called cold start misses or first reference misses.
(Misses in Infinite Cache)

– Capacity—If the cache cannot contain all the blocks needed
during execution of a program, capacity misses will occur due
to blocks being discarded and later retrieved.
(Misses in Size X Cache)

– Conflict—If the block-placement strategy is set associative or
direct mapped, conflict misses (in addition to compulsory and
capacity misses) will occur because a block can be discarded
and later retrieved if too many blocks map to its set. These are
also called collision misses or interference misses.
(Misses in N-way Associative, Size X Cache)

CPS 220 15© Alvin R. Lebeck 2006

3Cs Absolute Miss Rate

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

Conflict

CPS 220 16© Alvin R. Lebeck 2006

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

2:1 Cache Rule

Conflict

CPS 220 17© Alvin R. Lebeck 2006

3Cs Relative Miss Rate

Cache Size (KB)

0%

20%

40%

60%

80%

100%

1 2 4 8

16 32 64

12
8

1-way

2-way
4-way

8-way

Capacity

Compulsory

Conflict

CPS 220 18© Alvin R. Lebeck 2006

How Can We Reduce Misses?

• Change Block Size? Which of 3Cs affected?

• Change Associativity? Which of 3Cs affected?

• Change Program/Compiler? Which of 3Cs
affected?

CPS 220 19© Alvin R. Lebeck 2006

Block Size (bytes)

Miss
Rate

0%

5%

10%

15%

20%

25%

16 32 64

12
8

25
6

1K

4K

16K

64K

256K

1. Reduce Misses via Larger Block Size

CPS 220 20© Alvin R. Lebeck 2006

2. Reduce Misses via Higher Associativity

• 2:1 Cache Rule:
– Miss Rate DM cache size N ~= Miss Rate 2-way cache size N/2

• Beware: Execution time is only final measure!
– Will Clock Cycle time increase?
– Hill [1988] suggested hit time external cache +10%, internal + 2% for

2-way vs. 1-way

CPS 220 21© Alvin R. Lebeck 2006

Example: Avg. Memory Access Time vs. Miss
Rate

• Example: assume Clock Cycle = 1.10 for 2-way, 1.12
for 4-way, 1.14 for 8-way vs. Clock cycle for direct
mapped

Cache Size Associativity
(KB) 1-way 2-way 4-way 8-way
1 2.33 2.15 2.07 2.01
2 1.98 1.86 1.76 1.68
4 1.72 1.67 1.61 1.53
8 1.46 1.48 1.47 1.43
16 1.29 1.32 1.32 1.32
32 1.20 1.24 1.25 1.27
64 1.14 1.20 1.21 1.23
128 1.10 1.17 1.18 1.20

(Red means A.M.A.T. not improved by more associativity)

CPS 220 22© Alvin R. Lebeck 2006

3. Reducing Conflict Misses via Victim Cache

• How to combine fast hit
time of Direct Mapped
yet still avoid conflict
misses?

• Add buffer to place data
discarded from cache

• Jouppi [1990]: 4-entry
victim cache removed
20% to 95% of conflicts
for a 4 KB direct mapped
data cache

TAG DATA

?

TAG DATA

?

CPU

Mem

CPS 220 23© Alvin R. Lebeck 2006

4. Reducing Conflict Misses via Pseudo-
Associativity

• How to combine fast hit time of Direct Mapped and have
the lower conflict misses of 2-way SA cache?

• Divide cache: on a miss, check other half of cache to see
if there, if so have a pseudo-hit (slow hit)

• Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles
– Better for caches not tied directly to processor

Hit Time

Pseudo Hit Time Miss Penalty

Time

CPS 220 24© Alvin R. Lebeck 2006

5. Reducing Misses by HW Prefetching of
Instruction & Data

• E.g., Instruction Prefetching
– Alpha 21064 fetches 2 blocks on a miss
– Extra block placed in stream buffer
– On miss check stream buffer

• Works with data blocks too:
– Jouppi [1990] 1 data stream buffer got 25% misses from 4KB cache;

4 streams got 43%
– Palacharla & Kessler [1994] for scientific programs for 8 streams

got 50% to 70% of misses from 2 64KB, 4-way set associative
caches

– Pointers vs. arrays
– Kedem: Markov predictor (address correlation)

• Prefetching relies on extra memory bandwidth that
can be used without penalty

CPS 220 25© Alvin R. Lebeck 2006

6. Reducing Misses by SW Prefetching Data

• Data Prefetch
– Load data into register (HP PA-RISC loads) binding
– Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)

non-binding
– Special prefetching instructions cannot cause faults;

a form of speculative execution

• Issuing Prefetch Instructions takes time
– Is cost of prefetch issues < savings in reduced misses?

CPS 220 26© Alvin R. Lebeck 2006

Improving Cache Performance

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

CPS 220 27© Alvin R. Lebeck 2006

Reducing Misses

• Classifying Misses: 3 Cs
– Compulsory—The first access to a block is not in the cache,

so the block must be brought into the cache. These are also
called cold start misses or first reference misses.
(Misses in Infinite Cache)

– Capacity—If the cache cannot contain all the blocks needed
during execution of a program, capacity misses will occur due
to blocks being discarded and later retrieved.
(Misses in Size X Cache)

– Conflict—If the block-placement strategy is set associative or
direct mapped, conflict misses (in addition to compulsory and
capacity misses) will occur because a block can be discarded
and later retrieved if too many blocks map to its set. These are
also called collision misses or interference misses.
(Misses in N-way Associative, Size X Cache)

CPS 220 28© Alvin R. Lebeck 2006

7. Reducing Misses by Program/Compiler
Optimizations

• Instructions
– Reorder procedures in memory so as to reduce misses
– Profiling to look at conflicts
– McFarling [1989] reduced caches misses by 75% on 8KB direct

mapped cache with 4 byte blocks

• Data
– Merging Arrays: improve spatial locality by single array of

compound elements vs. 2 arrays
– Loop Interchange: change nesting of loops to access data in

order stored in memory
– Loop Fusion: Combine 2 independent loops that have same

looping and some variables overlap
– Blocking: Improve temporal locality by accessing “blocks” of data

repeatedly vs. going down whole columns or rows

CPS 220 29© Alvin R. Lebeck 2006

Merging Arrays Example

/* Before */
int val[SIZE];
int key[SIZE];

/* After */
struct merge {

int val;
int key;

};
struct merge merged_array[SIZE];

• Reducing conflicts between val & key

CPS 220 30© Alvin R. Lebeck 2006

Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)
for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];
/* After */
for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)
for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

• Sequential accesses instead of striding
through memory every 100 words

• What is miss rate before and after?

CPS 220 31© Alvin R. Lebeck 2006

Loop Fusion Example

/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];
/* After */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access

CPS 220 32© Alvin R. Lebeck 2006

Blocking Example

/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{r = 0;
for (k = 0; k < N; k = k+1){
r = r + y[i][k]*z[k][j];};

x[i][j] = r;
};

• Two Inner Loops:
– Read all NxN elements of z[]
– Read N elements of 1 row of y[] repeatedly
– Write N elements of 1 row of x[]

• Capacity Misses a function of N & Cache Size:
– 3 NxN => no capacity misses; otherwise ...

• Idea: compute on BxB submatrix that fits

CPS 220 33© Alvin R. Lebeck 2006

Blocking Example
/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)
{r = 0;
for (k = kk; k < min(kk+B-1,N); k = k+1) {
r = r + y[i][k]*z[k][j];};

x[i][j] = x[i][j] + r;
};

• Capacity Misses from 2N3 + N2 to 2N3/B +N2

• B called Blocking Factor
• 6 loop variant exists
• Conflict Misses?

CPS 220 34© Alvin R. Lebeck 2006

• Conflict misses in caches not FA vs. Blocking size
– Lam et al [1991] a blocking factor of 24 had a fifth the misses vs.

48 despite both fit in cache

Blocking Factor

0

0.05

0.1

0 50 100 150

Fully Associative Cache

Direct Mapped Cache

Reducing Conflict Misses by Blocking

CPS 220 35© Alvin R. Lebeck 2006

Performance Improvement

1 1.5 2 2.5 3

compress

cholesky
(nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

merged
arrays

loop
interchange

loop fusion blocking

Summary of Program/Compiler Optimizations to
Reduce Cache Misses

36© Alvin R. Lebeck 2006

Layout and Cache Behavior

•Tile elements spread out in
memory because of column-
major mapping
•Fixed mapping into cache
•Self-interference in cache

Memory

Cache

Cache Mapping

37© Alvin R. Lebeck 2006

Making Tiles Contiguous

• Elements of a quadrant
are contiguous

• Recursive layout
• Elements of a tile are

contiguous
• No self-interference in

cache

Memory Cache Mapping

38© Alvin R. Lebeck 2006

Non-linear Layout Functions

00 11 22 33

44 55 66 77

88 99 1010 1111

1212 1313 1414 1515

00 33 44 55

11 22 77 66

1414 1313 88 99

1515 1212 1111 1010

00 11 44 55

22 33 66 77

88 99 1212 1313

1010 1111 1414 1515

•Different locality properties
•Different inclusion properties
•Different addressing costs

4-D blocked Morton order Hilbert order

39© Alvin R. Lebeck 2006

Performance Improvement

CPU UltraSPARC 2i UltraSPARC 2 Alpha 21164
Clock rate 300MHz 300 MHz 500MHz
L1 cache 16KB/32B/1 16KB/32B/1 8KB/32B/1
L2 cache 512KB/64B/1 2MB/64B/1 96KB/64B/3
L3 cache 2MB/64B/1
RAM 320MB 512MB 512MB
TLB entries 64 64 64
Page size 8KB 8KB 8KB

Ultra 10 Ultra 60 Miata
4D MO 4D MO 4D MO

BLKMXM 0.93 1.06 0.95 1.05 0.97 0.95
RECMXM 0.94 0.94 0.95
STRASSEN 0.87 0.79 0.91
CHOL 0.78 0.85 0.67
STDHAAR 0.68 0.67 0.64 0.64 0.42 0.43
NONHAAR 0.62 0.61 0.58 0.58 0.40 0.40

40© Alvin R. Lebeck 2006

Comparison with TSS

BMXM, comparison with TSS

0

1

2

3

4

5

6

7

8

500 520 540 560 580 600

Problem size (elements)

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

TSS/Ultra 10
4D/ Ultra 10, t=17
4D/ Ultra 10, t=30

CPS 220 41© Alvin R. Lebeck 2006

Summary

• 3 Cs: Compulsory, Capacity, Conflict
– How to eliminate them

• Program Transformations
– Change Algorithm
– Change Data Layout

• Implication: Think about caches if you want high
performance!

CPUtime = IC × CPIExecution +
Memory accesses

Instruction
× Miss rate × Miss penalty⎛

⎝
⎞
⎠ × Clock cycle time

