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Admin

• Homework #4 Due November 2nd

• Work on Projects
• Midterm

– Max 98
– Min 50
– Mean 80

• Read NUCA paper
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Review: ABCs of caches

• Associativity
• Block size
• Capacity
• Number of sets S = C/(BA)
• 1-way (Direct-mapped)

– A = 1, S = C/B

• N-way set-associative
• Fully associativity

– S = 1, C = BA

• Know how a specific piece of data is found
– Index, tag, block offset
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Write Policies
• We know about write-through vs. write-back
• Assume: a 16-bit write to memory location 0x00 

causes a cache miss.
• Do we change the cache tag and update data in the 

block?
Yes: Write Allocate
No: Write No-Allocate

• Do we fetch the other data in the block?
Yes: Fetch-on-Write (usually do write-allocate)
No: No-Fetch-on-Write

• Write-around cache
– Write-through no-write-allocate
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Sub-block Cache (Sectored)
• Sub-block:

– Share one cache tag between all sub-blocks in a block
– Each sub-block within a block has its own valid bit
– Example: 1 KB Direct Mapped Cache, 32-B Block, 8-B Sub-block

» Each cache entry will have: 32/8 = 4 valid bits

• Miss: only the bytes in that sub-block are brought in.
– reduces cache fill bandwidth (penalty).
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Review: Four Questions for Memory Hierarchy 
Designers

• Q1: Where can a block be placed in the upper level? 
(Block placement)

– Fully Associative, Set Associative, Direct Mapped

• Q2: How is a block found if it is in the upper level?
(Block identification)
– Tag/Block

• Q3: Which block should be replaced on a miss? 
(Block replacement)

– Random, LRU

• Q4: What happens on a write? 
(Write strategy)

– Write Back or Write Through (with Write Buffer)
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Cache Performance

CPU time = (CPU execution clock cycles + Memory stall 
clock cycles) x clock cycle time

Memory stall clock cycles = (Reads x Read miss rate x 
Read miss penalty + Writes x Write miss rate x Write 
miss penalty)

Memory stall clock cycles = Memory accesses x Miss 
rate x Miss penalty
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Cache Performance

CPUtime = IC x (CPIexecution + (Mem accesses per 
instruction x Miss rate x Miss penalty)) x Clock cycle 
time

hits are included in CPIexecution

Misses per instruction = Memory accesses per 
instruction x Miss rate

CPUtime = IC x (CPIexecution + Misses per instruction x 
Miss penalty) x Clock cycle time
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Example

• Miss penalty 50 clocks
• Miss rate 2%
• Base CPI 2.0
• 1.33 references per instruction
• Compute the CPUtime

• CPUtime = IC x (2.0 + (1.33 x 0.02 x 50)) x Clock
• CPUtime = IC x 3.33 x Clock
• So CPI increased from 2.0 to 3.33 with a 2% miss rate
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Example 2

• Two caches: both 64KB, 32 byte blocks, miss penalty 
70ns, 1.3 references per instruction, CPI 2.0 w/ perfect 
cache

• direct mapped
– Cycle time 2ns
– Miss rate 1.4%

• 2-way associative
– Cycle time increases by 10%
– Miss rate 1.0%

• Which is better?
– Compute average memory access time
– Compute CPU time
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Example 2 Continued

• Ave Mem Acc Time =
Hit time + (miss rate x miss penalty)

– 1-way: 2.0 + (0.014 x 70) = 2.98ns
– 2-way: 2.2 + (0.010 x 70) = 2.90ns

• CPUtime = IC x CPIexec x Cycle
– CPIexec = CPIbase + ((memacc/inst) x Miss rate x miss penalty)
– Note: miss penalty x cycle time = 70ns

– 1-way: IC x ((2.0 x 2.0) + (1.3x0.014x70))  = 5.27 x IC
– 2-way: IC x ((2.0 x 2.2) + (1.3x0.010x70))  =  5.31 x IC   
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Review: Cache Performance

CPUtime = IC x (CPIexecution + Mem accesses per 
instruction x Miss rate x Miss penalty) x Clock cycle 
time

hits are included in CPIexecution

Misses per instruction = Memory accesses per 
instruction x Miss rate

CPUtime = IC x (CPIexecution + Misses per instruction x 
Miss penalty) x Clock cycle time
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Improving Cache Performance

Ave Mem Acc Time =
Hit time + (miss rate x miss penalty)

1. Reduce the miss rate, 
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache. 
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Reducing Misses

• Classifying Misses: 3 Cs
– Compulsory—The first access to a block is not in the cache, 

so the block must be brought into the cache. These are also 
called cold start misses or first reference misses.
(Misses in Infinite Cache)

– Capacity—If the cache cannot contain all the blocks needed 
during execution of a program, capacity misses will occur due 
to blocks being discarded and later retrieved.
(Misses in Size X Cache)

– Conflict—If the block-placement strategy is set associative or 
direct mapped, conflict misses (in addition to compulsory and 
capacity misses) will occur because a block can be discarded 
and later retrieved if too many blocks map to its set. These are
also called collision misses or interference misses.
(Misses in N-way Associative, Size X Cache)



CPS 220 15© Alvin R. Lebeck 2006

3Cs Absolute Miss Rate
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Cache Size (KB)   
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3Cs Relative Miss Rate
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How Can We Reduce Misses?

• Change Block Size? Which of 3Cs affected?

• Change Associativity? Which of 3Cs affected?

• Change Program/Compiler? Which of 3Cs 
affected?
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1. Reduce Misses via Larger Block Size
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2. Reduce Misses via Higher Associativity

• 2:1 Cache Rule: 
– Miss Rate DM cache size N ~= Miss Rate 2-way cache size N/2

• Beware: Execution time is only final measure!
– Will Clock Cycle time increase?
– Hill [1988] suggested hit time external cache +10%, internal + 2% for 

2-way vs. 1-way
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Example: Avg. Memory Access Time vs. Miss 
Rate

• Example: assume Clock Cycle = 1.10 for 2-way, 1.12 
for 4-way, 1.14 for 8-way vs. Clock cycle for direct 
mapped

Cache Size Associativity
(KB) 1-way 2-way 4-way 8-way
1 2.33 2.15 2.07 2.01
2 1.98 1.86 1.76 1.68
4 1.72 1.67 1.61 1.53
8 1.46 1.48 1.47 1.43
16 1.29 1.32 1.32 1.32
32 1.20 1.24 1.25 1.27
64 1.14 1.20 1.21 1.23
128 1.10 1.17 1.18 1.20

(Red means A.M.A.T. not improved by more associativity)
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3. Reducing Conflict Misses via Victim Cache

• How to combine fast hit 
time of Direct Mapped 
yet still avoid conflict 
misses? 

• Add buffer to place data 
discarded from cache

• Jouppi [1990]: 4-entry 
victim cache removed 
20% to 95% of conflicts 
for a 4 KB direct mapped 
data cache

TAG DATA

?

TAG DATA

?

CPU

Mem
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4. Reducing Conflict Misses via Pseudo-
Associativity

• How to combine fast hit time of Direct Mapped and have 
the lower conflict misses of 2-way SA cache? 

• Divide cache: on a miss, check other half of cache to see 
if there, if so have a pseudo-hit (slow hit)

• Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles
– Better for caches not tied directly to  processor

Hit Time

Pseudo Hit Time Miss Penalty

Time
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5. Reducing Misses by HW Prefetching of 
Instruction & Data

• E.g., Instruction Prefetching
– Alpha 21064 fetches 2 blocks on a miss
– Extra block placed in stream buffer
– On miss check stream buffer

• Works with data blocks too:
– Jouppi [1990] 1 data stream buffer got 25% misses from 4KB cache; 

4 streams got 43%
– Palacharla & Kessler [1994] for scientific programs for 8 streams 

got 50% to 70% of misses from 2 64KB, 4-way set associative 
caches

– Pointers vs. arrays
– Kedem: Markov predictor (address correlation)

• Prefetching relies on extra memory bandwidth that 
can be used without penalty
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6. Reducing Misses by SW Prefetching Data

• Data Prefetch
– Load data into register (HP PA-RISC loads) binding
– Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9) 

non-binding
– Special prefetching instructions cannot cause faults;

a form of speculative execution

• Issuing Prefetch Instructions takes time
– Is cost of prefetch issues < savings in reduced misses?
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Improving Cache Performance

1. Reduce the miss rate, 
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache. 
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Reducing Misses

• Classifying Misses: 3 Cs
– Compulsory—The first access to a block is not in the cache, 

so the block must be brought into the cache. These are also 
called cold start misses or first reference misses.
(Misses in Infinite Cache)

– Capacity—If the cache cannot contain all the blocks needed 
during execution of a program, capacity misses will occur due 
to blocks being discarded and later retrieved.
(Misses in Size X Cache)

– Conflict—If the block-placement strategy is set associative or 
direct mapped, conflict misses (in addition to compulsory and 
capacity misses) will occur because a block can be discarded 
and later retrieved if too many blocks map to its set. These are
also called collision misses or interference misses.
(Misses in N-way Associative, Size X Cache)
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7. Reducing Misses by Program/Compiler 
Optimizations

• Instructions
– Reorder procedures in memory so as to reduce misses
– Profiling to look at conflicts
– McFarling [1989] reduced caches misses by 75% on 8KB direct 

mapped cache with 4 byte blocks

• Data
– Merging Arrays: improve spatial locality by single array of 

compound elements vs. 2 arrays
– Loop Interchange: change nesting of loops to access data in 

order stored in memory
– Loop Fusion: Combine 2 independent loops that have same 

looping and some variables overlap
– Blocking: Improve temporal locality by accessing “blocks” of data 

repeatedly vs. going down whole columns or rows
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Merging Arrays Example

/* Before */
int val[SIZE];
int key[SIZE];

/* After */
struct merge {

int val;
int key;

};
struct merge merged_array[SIZE];

• Reducing conflicts between val & key



CPS 220 30© Alvin R. Lebeck 2006

Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)
for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];
/* After */
for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)
for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

• Sequential accesses instead of striding 
through memory every 100 words

• What is miss rate before and after?
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Loop Fusion Example

/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];
/* After */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access
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Blocking Example

/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{r = 0;
for (k = 0; k < N; k = k+1){
r = r + y[i][k]*z[k][j];};

x[i][j] = r;
};

• Two Inner Loops:
– Read all NxN elements of z[ ]
– Read N elements of 1 row of y[ ] repeatedly
– Write N elements of 1 row  of x[ ]

• Capacity Misses a function of N & Cache Size:
– 3 NxN => no capacity misses; otherwise ...

• Idea: compute on BxB submatrix that fits
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Blocking Example
/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)
{r = 0;
for (k = kk; k < min(kk+B-1,N); k = k+1) {
r = r + y[i][k]*z[k][j];};

x[i][j] = x[i][j] + r;
};

• Capacity Misses from 2N3 + N2 to  2N3/B +N2

• B called Blocking Factor
• 6 loop variant exists
• Conflict Misses? 
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• Conflict misses in caches not FA vs. Blocking size
– Lam et al [1991] a blocking factor of 24 had a fifth the  misses vs. 

48 despite both fit in cache
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Performance Improvement           
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Summary of Program/Compiler Optimizations to 
Reduce Cache Misses
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Layout and Cache Behavior

•Tile elements spread out in 
memory because of column-
major mapping
•Fixed mapping into cache
•Self-interference in cache

Memory

Cache

Cache Mapping
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Making Tiles Contiguous

• Elements of a quadrant 
are contiguous

• Recursive layout
• Elements of a tile are 

contiguous
• No self-interference in 

cache

Memory Cache Mapping
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Non-linear Layout Functions
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1212 1313 1414 1515

00 33 44 55

11 22 77 66

1414 1313 88 99

1515 1212 1111 1010

00 11 44 55

22 33 66 77

88 99 1212 1313

1010 1111 1414 1515

•Different locality properties
•Different inclusion properties
•Different addressing costs

4-D blocked Morton order Hilbert order
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Performance Improvement

CPU UltraSPARC 2i UltraSPARC 2 Alpha 21164
Clock rate 300MHz 300 MHz 500MHz
L1 cache 16KB/32B/1 16KB/32B/1 8KB/32B/1
L2 cache 512KB/64B/1 2MB/64B/1 96KB/64B/3
L3 cache 2MB/64B/1
RAM 320MB 512MB 512MB
TLB entries 64 64 64
Page size 8KB 8KB 8KB

Ultra 10 Ultra 60 Miata
4D MO 4D MO 4D MO

BLKMXM 0.93 1.06 0.95 1.05 0.97 0.95
RECMXM 0.94 0.94 0.95
STRASSEN 0.87 0.79 0.91
CHOL 0.78 0.85 0.67
STDHAAR 0.68 0.67 0.64 0.64 0.42 0.43
NONHAAR 0.62 0.61 0.58 0.58 0.40 0.40
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Comparison with TSS

BMXM, comparison with TSS
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Summary

• 3 Cs: Compulsory, Capacity, Conflict
– How to eliminate them

• Program Transformations
– Change Algorithm
– Change Data Layout

• Implication:  Think about caches if you want high 
performance!

CPUtime = IC × CPIExecution +
Memory accesses

Instruction
× Miss rate × Miss  penalty⎛ 

⎝ 
⎞ 
⎠ × Clock  cycle  time


