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NP Hardness & CSPs
CPS 270

Ron Parr

NP-hardness

• Many problems in AI are NP-hard (or worse)

• What does this mean?
• These are some of the hardest problems in CS

• Identifying a problem as NP hard means:
– You probably shouldn’t waste time trying to find a 

polynomial time solution

– If you find a polynomial time solution, either
• You have a bug

• Find a place on your shelf for your Turing award

• NP hardness is a major triumph (and failure) 
for computer science theory 

What is the class NP?

• A class of decision problems (Yes/No)
• Solutions can be verified in polynomial time

• Examples:
– Graph coloring:

– Sortedness:  [1 2 3 4 5 8 7]
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SA NSW

VT

What is NP completeness?

• All NP complete problems can be “reduced” to 
each other in polynomial time

• What is a reduction?
– Use one problem to solve another

– A is reduced to B, if we can use B to solve A:

A instance Poly-time
xformation

B Solver

poly time A solver if B is poly time

Why care about NP-completeness?

• Solving any one NP-complete problem gives 
you the key to all others

• All NP-complete problems are, in a sense,
equivalent

• Insight into solving any one gives you insight 
into solving a vast array of problems of 
extraordinary practical and economic 
significance

Proving NP Completeness

• Want to prove problem C is NP complete
– Show that C is in NP

– Find known NP complete problem reducible to C

– Is graph color NP-complete?
• Prove that graph coloring is in NP

– Verify solution in poly time

– Easy

• Reduce known NP complete problem to TSPs
– Much more challenging
– Reduction from SAT
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The First NP Complete Problem
(Cook 1971)

• SAT:

• Want to find an assignment to all variables 
that makes this expression evaluate to true

• NP-complete for clauses of size 3 or greater

• How would you prove this?

...)()( 251221371 ∧∨∨∧∨∨ XXXXXX

What is NP Hardness?

• NP hardness is weaker than NP completeness
• NP hard if an NP complete problem is reducible to it
• NP completeness = NP hardness + NP membership
• Consider the problem #SAT

– How many satisfying assignments to:

– Is this in NP?
– Is it NP-hard?

...)()( 251221371 ∧∨∨∧∨∨ XXXXXX

#SAT is NP-hard

• Theorem: #SAT is NP hard

• Proof:
– Reduce SAT to #SAT

#SAT
solver

SAT
instance x

If x > 0
return Y

Else
return N

SAT Solver

NP-Completeness Summary

• NP-completeness tells us that a problem 
belongs to class of similar, hard problems.

• What if you find that a problem is NP hard?
– Look for good approximations
– Find different measures of complexity

– Look for tractable subclasses

– Use heuristics

CSPs
• What is a CSP?
• One view:  Search with special goal criteria
• CSP definition (general):

– Variables X1,…,Xn

– Variable Xi has domain Di

– Constaints C1,…,Cm

– Solution:  Each variable gets a value from its 
domain such that no constraints violated

• CSP examples…
– http://4c.ucc.ie/~tw/csplib/

Our Restricted View

• Variables X1,…,Xn

• A binary constraint, lists permitted assignments 
to pairs of variables

• A binary constraint between binary variables is 
a table of size 4, listing legal assignments for all 
4 combinations.

• A k-ary constraint lists legal assignments to k 
variables at a time.

• How large is a k-ary constraint for binary 
variables?

Note:  More expressive languages are often used.
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CSP Example
Graph coloring:

Western
Australia
(WA)

Northern
Territory
(NT)

Queensland (Q)South
Australia
(SA) New South

Whales (NSW)

Victoria (V)Tasmania (T)

Problem: Assign Red, Green and Blue so that no 2 adjacent
regions have the same color.

Example Contd.

• Variables:  {WA, NT, Q, SA, NSW, V, T}

• Domains:  {R,G,B}

• Constraints:
For WA – NT:{(R,G), (R,B), (G,B), (G,R), (B,R), (B,G)}

• We have a table for each adjacent pair

• Are our constraints binary?
• Can every CSP be viewed as a graph problem?

Constraint Graph

WA
NT

Q

SA NSW

VT
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T

Enumerate all
Legal combinations
Of WA and SA
(ignoring other regions)

CSPs as Search

WA

NT

SA

Q

NSW

V

T

Nodes: Partial Assignments

WA

NT

SA

Q

NSW

V

T

Actions:  Make Assignments

Backtracking

• Backtracking is the most obvious (and widely 
used) method for solving CSPs:
– Search forward by assigning values to variables
– If stuck, undo the most recent assignment and try again
– Repeat until satisfying assignment found or all 

combinations tried

• Embellishments
– Methods for picking next variable to assign

• Most constrained
• Least constrained

– Backjumping

NP-Completeness of CSPs

• Are CSPs in NP?

• Are they NP-hard?

• CSPs and graph coloring are equivalent

• Convert any graph coloring problem to CSP
• Convert any CSP to graph coloring 

• Graph coloring is NP-complete

• CSPs are NP-complete

• End of the story or just the beginning?
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Issues

• What are good heuristics?
– Often good to think of this as a local search

– Focus on choosing actions carefully, instead of 
pruning nodes carefully

• Can we develop heuristics that apply to the 
entire class of problems, not just specific 
instances?

• What’s the best we can hope for?

Constraint Graphs

• Constraint graphs are important because they capture 
the structural relationships between the variables

• IMPORTANT CONCEPT:
Not all instances of a hard problem class are hard
– Structural features give insight into hardness
– Group problems within class by structural features
– New measure of problem complexity

Node Consistency

• Check all nodes for 
inconsistencies

• For each node, there must 
exist at least one valid 
assignment given 
assignments to neighbors

• Rules out some bad 
assignments quickly

WA

NT

SA

Q

NSW

V

T

Arc Consistency

• Check all arcs for 
inconsistencies

• For each value at the start, 
there must exist a consistent 
value at the terminus

• Catches many inconsistencies
• Can use to iteratively reduce 

number of possible 
assignments to each variable

(constraint propagation)

WA

NT

SA

Q

NSW

V

T

Generalized Arc Consistency

• k-consistency
– Consider sets of k variables

– For each setting of a k-1 subset
– Must exist a consistent setting for the 

kth variable

• Check for more distant influences

• 1-consistency = node consistency
• 2 consistency =  arc consistency

WA

NT

SA

Q

NSW

V

T

Is this 3-consistent?

Facts About Arc Consistency

• What if a graph with n variables is n-
consistent?

• What is the worst-case cost of checking 
n-consistency?
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Linear Constraint Structures

X1 X2 X3 X4 X5 X6

Are these easy or hard?

Suppose our chain is arc consistent…

Properties of Chains

Theorem:  Arc consistent linear constraint graphs are n 
consistent.

Properties of Trees

Theorem:  Arc consistent constraint trees are n consistent.

Variable Elimination

WA

NT

SA

Q

NSW

V

NT

SA

Q

NSW

V

Domain(NT,SA) = {(blue, green), (blue, red),
(green, blue), (green, red), (red, blue), (red, green)}

Eliminate WA

Eliminate Q

NT

SA

Q

NSW

V

NT

SA NSW

V

Domain(NT,SA,NSW) = {(blue, green, blue), (blue, red, blue),
(red, blue, red), (red, green, red), (green, blue, green),
(green, red, green)}

Simplify

NT

SA NSW

V

Domain(NT,SA,NSW) = {(blue, green, blue), (blue, red, blue),
(red, blue, red), (red, green, red), (green, blue, green),
(green, red, green)}

Domain(SA, NSW) =
{(blue, green), (blue, red),
(green, blue), (green, red),
(red, blue), (red, green)}
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Finish

SA NSW

V

Domain(SA, NSW) =
{(blue, green), (blue, red),
(green, blue), (green, red),
(red, blue), (red, green)}

Can identify all settings of SA, V, NSW for which
there is guaranteed to be a consistent setting of
the remaining variables.

Q:  How do we get the settings of the other variables?

Variable Elimination

Var_elim_CSP_solve (vars, constraints)
Q = queue of all variables
i = length(vars)+1
While not(empty(Q))

X = pop(Q)
Xi = merge(X, neighbors(X))
Simplify Xi
remove_from_Q(Q, neighbors(X))
add_to_Q(Q, Xi)
i=i+1

Note:  Merge operation can be tricky to implement, depending
upon constraint language.

Variable Elimination Issues

• How expensive is this?

• Is it sensitive to elimination ordering?

Variable Elimination Ordering

Is it better to start at the edges and work in, or at the center
and work out?

Variable Elimination Facts

• You can figure out the cost of a particular elimination 
ordering without actually constructing the tables

• Finding optimal elimination ordering is NP hard

• Good heuristics for finding near optimal orderings

• Another structural complexity measure
• Investment in finding good ordering can be 

amortized

Structural Complexity

• Structural complexity is a somewhat different view 
of computational complexity: depends upon 
problem features, not problem class

• For many problems structural complexity is quite 
manageable

• Idea: Why not convert other NP-hard problems to 
CSPs and use structural complexity measures, 
CSP algorithms to solve?

kkpoly 22 )( >>
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CSP Summary

• CSPs are a specialized language for describing 
certain types of decision problems

• We can formulate special heuristics and 
methods for problems that can be described in 
this language

• In general, CSPs are NP hard

• We can use structural measures of complexity to 
figure out which ones are really hard


