

- If the concept has d conjuncts, there will be a decision tree for this concept with depth d
- Decision trees are very bad for some functions:
- Parity function
- Majority function
- For errorless data, you can always construct a decision tree that correctly labels every element of the training set, but it may be exponential in size

Facts About Decision Trees

Decision Trees

- Decision trees try to construct small, consistent hypothesis
- Suppose our concept is "blue cube"

Decision Tree Algorithms

- Aim for:
- Small decision trees
- Robustness to misclassification
- Constructing the shortest decision tree is intractable
- Standard approaches are greedy
- Classical approach is to split tree using an information-theoretic criterion

Growing Decision Trees

Repeat until no good leaves
Pick leaf
Split = choose_variable(variabes - all_parents(leaf))
For val in domain(split)
new_leaf = new_leaf(split=val)
new_leaf.instances=leaf.stances s.t. split=val
For leaf in tree
classification(leaf)=majority_classification(leaf)

Information Theory

- Roughly speaking, information theory measures the expected number of bits needed to communicate information from one person to another
- Suppose person1 is flipping a coin with bias p
- Person1 wants to tell person2 the sequence of results
- What is the expected number of bits person 1 will send to person 2?

Note relation to compression

Information Content
$I\left(p_{1}, \ldots, p_{n}\right)=E(\# \mathrm{bits})=\sum_{i=1}^{n}-p_{i} \log _{2}\left(p_{i}\right)$
For an unbiased coin, the information content is 1. For a totally biased coin, the information content is 0.

Gain Example

- Suppose we have seen:
- Red tetrahedron(f), Blue sphere(t), Blue cone(t), green cone(f)
- Is it better to split on shape or color?
- Information of original set is: 1
- Information gain of splitting on cone:
- Information gain of splitting on blue:

Favoring Small Examples

- Information gain (and other splitting criteria)
- Are greedy
- Favor small trees
- This makes representation an issue yet again
- Suppose you want to learn "parity(+) and blue"
- Hard to learn with decision trees, but
- If we treat parity like a state variable, then it's easy
- Call these derived variables features or attribrutes

Decision Tree Conclusion

- Simple method
- Works surprisingly well in many cases
- Issues:
- Continuous variables
- Missing values
- Expressive power

