

First Order Logic

- Propositional logic is very restrictive
- Can't make global statements about objects in the world
- Tends to have very large KBs
- First order logic is more expressive
- Relations, quantification, functions
- More expensive

First Order Syntax

- Sentences
- Atomic sentence predicate(term)
- Terms - functions, constants, variables
- Connectives
- Quantifiers
- Constants
- Variables

Relations

- Assert relationships between objects
- Examples
- Loves(Harry, Sally)
- Between(Canada, US, Mexico)
- Semantics
- Object and predicate names are mnemonic only
- Interpretation is imposed from outside

Quantification

- For all objects in the world...
$\forall x \operatorname{happy}(x)$
- For at least one object in the world...
$\exists x \operatorname{happy}(x)$
- Functions are specials cases of relations
- Suppose $R\left(x_{1}, x_{2}, \ldots, x_{n}, y\right)$ is such that for every value of $x_{1}, x_{2}, \ldots, x_{n}$ there is a unique y
- Then $\mathrm{R}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ can be used as a shorthand for y
- Crossed(Right_leg_of(Ron), Left_leg_of(Ron))
- Remember that the object identified by a function depends upon the interpretation

Functions

Examples

- Everybody loves somebody
- Everybody loves everybody
- Everybody loves Raymond
- Raymond loves everybody

What's Missing?

- There are many extensions to first order logic
- Higher order logics permit quantification over predicates:

$$
\forall x, y(x=y) \Leftrightarrow(\forall p(p(x) \Leftrightarrow p(y)))
$$

- Functional expressions (lambda calculus)
- Uniqueness
- Extensions typically replace a potentially long series of conjuncts with a single expression

Inference

- All rules of inference for propositional logic apply to first order logic
- We need extra rules to handle substitution for quantified variables
$\operatorname{SUBST}(\{x /$ Harry, $y /$ Sally $\}, \operatorname{Loves}(x, y))=\operatorname{Loves}($ Harry, Sally $)$

Inference Rules

- Universal Elimination

$$
\frac{\forall v \alpha}{\operatorname{SUBST}(\{v / g\}, \alpha)}
$$

- How to read this:
- We have a universally quantified variable v in α
- Can substitute any g for v and α will still be true

Inference Rules

- Existential Elimination

$$
\frac{\exists v \alpha}{\operatorname{SUBST}(\{v / k\}, \alpha)}
$$

- How to read this:
- We have a universally quantified variable v in a
- Can substitute any k for v and α will still be true
- IMPORTANT: k must be a previously unused constant (skolem constant). Why is this OK?

Skolemization within Quantifiers

- Skolemizing w/in universal quantifier is tricky
- Everybody loves somebody
$\forall x \exists y: \operatorname{loves}(x, y)$
- With Skolem constants, becomes:
$\forall x:$ loves $(x$, object 34752$)$
- Why is this wrong?
- Need to use skolem functions:
$\forall x: \operatorname{loves}(x$, personlovedby $(x))$

Inference Rules

- Existential Introduction

$$
\frac{\alpha}{\operatorname{SUBST}(\{g / v\}, \exists v \alpha)}
$$

- How to read this:
- We know that the sentence α is true
- Can substitute variable v for any constant g in α and ($\mathrm{w} / \mathrm{existential}$ quantifier) and α will still be true
- Why is this OK?

Inference Rules

- Generalized Modus Ponens
- Define a substitution such that:

$$
\operatorname{SUBST}\left(\theta, p_{i}^{\prime}\right)=\operatorname{SUBST}\left(\theta, p_{i}\right) \forall i
$$

- Then

$$
\frac{p_{1}^{\prime}, p_{2}{ }^{\prime}, \ldots p_{n}{ }^{\prime},\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q\right)}{\operatorname{SUBST}(\{\theta / q\})}
$$

Generalized Modus Ponens

$\operatorname{SUBST}\left(\theta, p_{i}{ }^{\prime}\right)=\operatorname{SUBST}\left(\theta, p_{i}\right) \forall i$
$p_{1}{ }^{\prime}, p_{2}{ }^{\prime}, \ldots p_{n}{ }^{\prime},\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q\right)$
$\operatorname{SUBST}(\{\theta / q\})$

- How to read this:
- We have an implication which implies q
- Any consistent substitution of variables on the LHS must yield a valid conclusion on the RHS

Unification

- Substitution is a non-trivial matter
- We need an algorithm unify:
$\operatorname{Unify}(p, q)=\theta: \operatorname{Subst}(\theta, p)=\operatorname{Subst}(\theta, q)$
- Important: Unification replaces variables:
$\exists x$ Loves (John, x), $\exists x$ Hates (John, x)

Unification Example

$\forall x \operatorname{Knows}($ John, $x) \Rightarrow \operatorname{Loves(John,~} x)$
Knows(John, Jane)
$\forall y$ Knows (y,Leonid)
$\forall y \operatorname{Knows}(y, \operatorname{Mother}(y))$
$\forall x$ Knows(x, Elizabeth)

Note: All unquantified variables are assumed universal from here on.

Most General Unifier

- Unify(Knows(John,x),Knows(y,z))
- \{y/John,x/z\}
- \{y/John,x/z,w/Freda\}
- \{y/John,x/John,z/John)
- When in doubt, we should always return the most general unifier (MGU)
- MGU makes least commitment about binding variables to constants

Proof Procedures

- Suppose we have a knowledge base: KB
- We want to prove q
- Forward Chaining
- Like search: Keep proving new things and adding
them to the KB until we are able to prove q
- Backward Chaining
- Find $p_{1} \ldots p_{n}$ s.t. knowing $p_{1} \ldots p_{n}$ would prove q
- Recursively try to prove $p_{1} \ldots p_{n}$

Forward Chaining Example

$\forall x \operatorname{Knows}($ John,$x) \Rightarrow \operatorname{Loves}($ John, $x)$
Knows (John, Jane)
$\forall y K n o w s(y$, Leonid)
$\forall y \operatorname{Knows}(y, \operatorname{Mother}(y))$
$\forall x \operatorname{Knows}(x$, Elizabeth $)$

Forward Chaining

Procedure Forward_Chain(KB,p)
If p is in $K B$ then return
Add p to KB
For each $\left(p_{1} \wedge \ldots \wedge p_{n}=>q\right)$ in $K B$ such that for
some i,
$\operatorname{Unify}\left(p_{i}, p\right)=\theta$ succeeds do
Find_And_Infer(KB,[$\left.\left.p_{1}, \ldots, p_{i-1}, p_{i+1}, \ldots, p_{n}\right], q, \theta\right)$
end
Procedure Find_and_Infer(KB,premises,conclusion, θ)
If premises=[] then
Forward_Chain(KB,Subst(θ, conclusion))
Else for each p' in KB such that
$\operatorname{Unify}\left(p^{\prime}, \operatorname{Subst}(\theta, \operatorname{Head}(\right.$ premises $\left.))\right)=\theta_{2}$ do
Find_And_Infer(KB,Tail(premises),conclusion, $\left.\left[\theta, \theta_{2}\right]\right)$)
end

Backward Chaining

```
Function Back_Chain(KB,q)
    Back_Chain_List(KB,[q],{})
Function Back_Chain_List(KB,qlist,0)
If qlist=[ then return }
q<-head(qlist)
For each \mp@subsup{q}{i}{\prime}
        Answers <- Answers + [0,0i]
For each ( }\mp@subsup{p}{i}{\wedge}...^\mp@subsup{p}{n}{\prime}=>\mp@subsup{q}{i}{\prime})\mathrm{ in KB: 的<-Unify(q,q
    Answers<- Answers+
    Back_Chain_List(KB,Subst(qi,[p; [p..p]|],[0,\mp@subsup{0}{i}{}]))
return union of Back_Chain_List(KB,T_Tail(qlist),0) for each 0 in answers
```


Backward Chaining Example

$\forall x \operatorname{Knows}($ John,$x) \Rightarrow \operatorname{Loves}($ John, $x)$
Knows (John, Jane)
$\forall y K n o w s(y$, Leonid $)$
$\forall y \operatorname{Knows}(y, \operatorname{Mother}(y))$
$\forall x \operatorname{Knows}(x$, Elizabeth $)$

Completeness

```
\forallxP(X)=>Q(x)
\forall}\negP(X)=>R(x
\forallxQ(x)=>S(x)
\forallRR(x)=>S(x)
S(A) ???
```

- Problem: Generalized Modus Ponens not complete
- Goal: A sound and complete inference procedure for first order logic

Generalized Resolution

$\frac{\left(p_{1} \vee \ldots p_{j} \ldots \vee p_{m}\right),\left(q_{1} \vee \ldots q_{k} \ldots \vee q_{n}\right)}{\operatorname{SUBST}\left(\theta,\left(p_{1} \vee \ldots p_{j-1} \vee p_{j+1} \ldots \vee p_{m} \vee q_{1} \vee \ldots q_{k-1} \vee q_{k+1} \ldots \vee q_{n}\right)\right)}$

- How to read this:
- Substitution: Unify $\left(p_{j}, \neg q_{k}\right)=\theta$
- If the same term appears in both positive and negative form in two disjunctions, they cancel out when disjunctions are combined

Resolution Properties

- Proof by refutation (asserting negation and resolving to nil) is sound and complete
- Resolution is not complete in a generative sense, only in a testing sense
- This is only part of the job
- To use resolution, we must convert everything to a canonical form

Canonical Form

- Eliminate Implications
- Move negation inwards
- Standardize (apart) variables
- Move quantifiers Left
- Skolemize
- Drop universal quantifiers
- Distribute AND over OR
- Flatten nested conjunctions and disjunctions
- Convert disjunctions to implications (optional)

Resolution Example

$(\neg P(x) \vee Q(x))$
$(P(x) \vee R(x))$
$(\neg Q(x) \vee S(x))$
$(\neg R(x) \vee S(x))$
$S(A)$???

Example on board...

Computational Properties

- Can we enumerate the set of all proofs?
- Can we check if a proof is valid?
- What if no valid proof exists?
- Inference in first order logic is semidecidable
- Compare with halting problem

Gödel

- How do these soundness and completeness results relate to Gödel's incompleteness theorem?
- Incompleteness applies to mathematical systems
- You need numbers because you need a way of referring to proofs by number

