Games

CPS 270 Ron Parr

Why Study Games?

- Many human activities can be modeled as games
 - Negotiations
 - Bidding
 - TCP/IP
 - Military confrontations
 - Pursuit/Evasion
- · Games are used to train the mind
 - Human game-playing, animal play-fighting

Why Are Games Good for AI?

- · Games typically have concise rules
- · Well-defined starting and end points
- · Sensing and effecting are simplified
 - Not true for sports games
 - See robocup
- · Games are fun!
- Downside: Getting taken seriously (not)
 - See robo search and rescue

History of Games in Al

- Computer games have been around almost as long as computers (perhaps longer)
 - Chess: Turing (and others) in the 1950s
 - Checkers: Samuel, 1950s learning program
- Usually start with naïve optimism
- · Follow with naïve pessimism
- Simon: Computer chess champ by 1967
- Many, e.g., Kasparov, predicted that a computer would never be champion

Games Today

- Computers perform at champion level
 - Backgammon, Checkers, Chess, Othello
- · Computers perform well
 - Bridge
- · Computers still do badly
 - Go, Hex

Game Setup

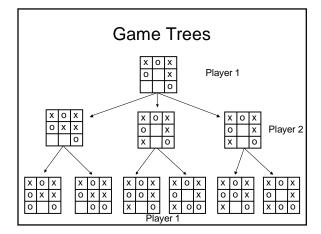
- · Most commonly, we study games that are:
 - 2 player
 - Alternating
 - Zero-sum
 - Perfect information
- Examples: Checkers, chess, backgammon
- Assumptions can be relaxed at some expense
- Economics studies case where number of agents is very large
 - Individual actions don't change the dynamics

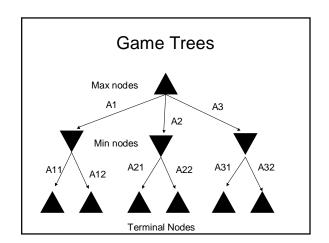
Zero Sum Games

- Assign values to different outcomes
- Win = 1, Loss = -1
- With zero sum games every gain comes at the other player's expense
- Sum of both player's scores must be 0
- Are any games truly zero sum?

Characterizing Games

- Two-player games very much like search
 - Initial state
 - Successor function
 - Terminal test
 - Objective function (heuristic function)
- · Unlike search
 - Terminal states are often a large set
 - Full search to terminal states usually impossible

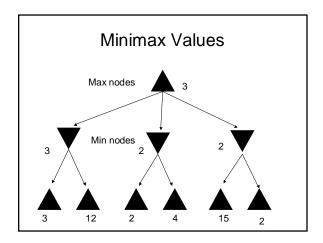




Minimax

- Max player tries to maximize his return
- Min player tries to minimize his return
- This is optimal for both (zero sum)

 $\min(n_{\max}) = \max_{s \in \text{succesors}(n)} \min(s)$ $\min(n_{\min}) = \min_{s \in \text{succesors}(n)} \min(s)$



Minimax Properties

- · Minimax can be run depth first
 - Time O(bm)
 - Space O(bm)
- · Assumes that opponent plays optimally
- Based on a worst-case analysis
- · What if this is incorrect?

Minimax in the Real World

- Search trees are too big
- · Alternating turns double depth of the search
 - -2 ply = 1 full turn
- · Branching factors are too high
 - Chess: 35
 - Go: 361
- Search from start never terminates in nontrivial games

Evaluation Functions

- · Like heuristic functions
- Try to estimate value of a node without expanding all the way to termination
- · Using evaluation functions
 - Do a depth-limited search
 - Treat evaluation function as if it were terminal
- · What's wrong with this?
- How do you pick the depth?
- How do you manage your time?
 - Iterative deepening, quiescence

Desiderata for Evaluation Functions

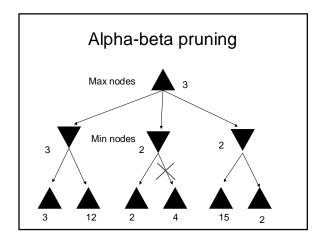
- Would like to put the same ordering on nodes (even if values aren't totally right)
- Is this a reasonable thing to ask for?
- What if you have a perfect evaluation function?
- How are evaluation functions made in practice?
 - Buckets
 - Linear combinations
 - Chess pieces (material)
 - Board control (positional, strategic)

Search Control Issues

- · Horizon effects
 - Sometimes something interesting is just beyond the horizon
 - How do you know?
- When to generate more nodes?
- If you selectively extend your frontier, how do you decide where?
- If you have a fixed amount of total game time, how do you allocate this?

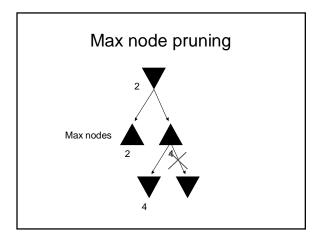
Pruning

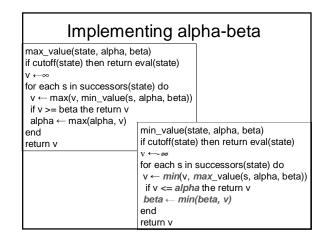
- The most important search control method is figuring out which nodes you don't need to expand
- Use the fact that we are doing a worst-case analysis to our advantage
 - Max player cuts off search when he knows min player can force a provably bad outcome
 - Min player cuts of search when he knows max can force a provably good (for max) outcome



How to prune

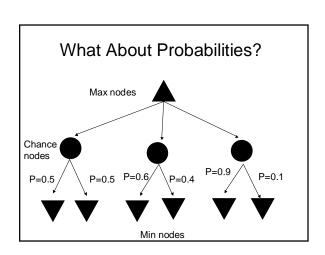
- We still do (bounded) DFS
- Expand at least one path to the "bottom"
- If current node is **max** node, and **min** can force a *lower* value, then prune siblings
- If current node is min node, and max can force a *higher* value, then prune siblings





Amazing facts about alpha-beta

- Empirically, alpha-beta has the effect of reducing the branching factor by half for many problems
- Effectively doubles horizon
- Alpha-beta makes the difference between novice and expert computer players



Expectiminimax

- n random outcomes per chance node
- O(bmnm) time

eminimax $(n_{\text{max}}) = \max_{s \in \text{succesors}(n)} \text{eminimax}(s)$ eminimax $(n_{\text{min}}) = \min_{s \in \text{succesors}(n)} \text{eminimax}(s)$ eminimax $(n_{\text{chance}}) = \sum_{s \in \text{succesors}(n)} \text{eminimax}(s)p(s)$

Expectiminimax is nasty

- · High branching factor
- · Randomness makes evaluation fns difficult
 - Hard to predict many steps into future
 - Values tend to smear together
 - Preserving order is not sufficient
- · Pruning chances nodes is problematic
 - Prune based upon bound on an expectation
 - Need a priori bounds on the evaluation function

Multiplayer Games

- Things sort-of generalize
- We can maintain a vector of possible values for each player at each node
- · Assume that each player acts greedily
- · What's wrong with this?

Conclusions

- Game tree search is a special kind of search
- Rely heavily on heuristic evaluation functions
- Alpha-beta is a big win
- Most successful players use alpha-beta
- Final thoughts:
 - Search effort vs. evaluation function effort
 - When to invest in your evaluation function?