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Overview

• Bayes nets are (mostly) atemporal

• Need a way to talk about a world that 
changes over time

• Necessary for planning
• Many important applications

– Target tracking

– Patient/factory monitoring

– Speech recognition

Back to Atomic Events

• We began talking about probabilities 
from the perspective of atomic events

• An atomic event is an assignment to 
every random variable in the domain

• For n random variables, there are 2n

possible atomic events

• State variables return later (briefly)

States

• When reasoning about time, we often 
call atomic events states

• States, like atomic events, form a 
mutually exclusive and jointly 
exhaustive partition of the space of 
possible events

• We can describe how a system 
behaves with a state-transition diagram

State Transition Diagram

S1 S2
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P(S2|S1)=0.75
P(S1|S1)=0.25
P(S2|S2)=0.50
P(S1|S2)=0.50

Don’t confuse states with state variables!
Don’t confuse states with state variables!
Don’t confuse states with state variables!

State Transition Diagrams

• Make a lot of assumptions

– Transition probabilities don’t change over time 
(stationarity)

– The event space does not change over time

– Probability distribution over next states depends only on 
the current state  (Markov assumption)

– Time moves in uniform, discrete increments
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The Markov Assumption

• Let St be a random variable for the state at time t

• P(St|St-1,…,S0) = P(St|St-1)

• (Use subscripts for time; S0 is different from S0)

• Markov is special kind of conditional independence

• Future is independent of past given current state

Markov Models

• A system with states that obey the Markov 
assumption is called a Markov Model

• A sequence of states resulting from such a model is 
called a Markov Chain

• The mathematical properties of Markov chains are 
studied heavily in mathematics, statistics, computer 
science, electrical engineering, etc.

What’s The Big Deal?

• A system that obeys the Markov property can be 
described succinctly with a transition matrix, where 
the i,jth entry of the matrix is P(Sj|Si)

• The Markov property ensures that we can maintain 
this succinct description over a potentially infinite 
time sequence

• Properties of the system can be analyzed in terms 
of properties of the transition matrix
– Steady-state probabilities
– Convergence rate, etc.

Observations

• Introduce Et for the observation at time t 

• Observations are like evidence

• Define the probability distribution over observations 
as function of current state:  P(E|S)

• Assume observations are conditionally independent 
of other variables given current state

• Assume observation probabilities are stationary

A Graphical Model

S0 S1

E0 E1

Note:  These are random variables, not states!

Applications

• Monitoring/Filtering
– S is the current status of the patient/factory
– E is the current measurement

• Prediction
– S is the current/future position of an object

– E are our past observations
– Project S into the future
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Applications

• Smoothing/hindsight
– Update view of the past based upon future
– Diagnosis:  Factory exploded at time t=20, 

what happened at t=5 to cause this?

• Most likely explanation
– What is the most likely sequence of events 

(from start to finish) to explain what we 
have seen?
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S0 S1

E0 E1

We want:  P(St|et…e0)

By variable elimination:
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S0 S1

E0 E1

We want:  P(Sk|et…e0), 0<k<t

By variable elimination:
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Algebraic View: Our Main Tool
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Extending Bayes Rule
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How to think about this:  The C is like “extra” evidence.
This forces us into one corner of the event space.
Given that we are in this corner, everything behaves the same.
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Monitoring

We want:  P(St|et…e0)
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Example
• W = student is working
• R = student has produced results
• adviser observed whether student has 

produced results
• Must infer whether student is working given 

observations
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Problem

Assume student starts work in a productive (working) state.
Adviser has observed two consecutive months without results.
What is probability that student was working in the second month?

W1 W2W0

1r 2r

Let’s Do The Math
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More Math
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Hindsight
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Problem II

Can we revise our estimate of the probability that the student
worked at step 1?

We initially thought:

Since the student didn’t have results at time 2, is it now
less likely that he was working at time 1?
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What Happened?

• After one observation, we initially think it is 
somewhat less likely that the student is working.  
However, not all working students have results all of 
the time.

• After two observations, we conclude that the student 
was much less likely to have been working in the first 
time step.

• Moral:  Never go two meetings without having some 
results for your adviser.

Checkpoint

• Done:  Forward Monitoring and Backward Smoothing

• Monitoring is recursive from the past to the present

• Backward smoothing requires two recursive passes

• Called the forward-backward algorithm
– Independently discovered many times throughout history
– Was classified for many years by US Govt.

• Equivalent to doing variable elimination!

What’s Left?

• We have seen that filtering and smoothing can be 
done efficiently, so what’s the catch?

• We’re still working at the level of atomic events

• There are too many atomic events!

• We need a generalization of Bayes nets to let us 
think about the world at the level of state variables 
and not states
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Working With DBNs

Can we do variable elimination for DBNs?

Harsh Reality

• While BN inference in the static case 
was a very nice story, there are 
essentially no tractable, exact 
algorithms for DBNs

• Active research area:
– Approximate inference algorithms

– Sampling methods

Continuous Variables

• How do we represent a probability distribution over 
a continuous variable?
– Probability density function

– Summations become integrals

• Very messy except for some special cases:
– Distribution over variable X at time t+1 is a multivariate 

normal with a mean that is a linear function of the 
variables at the previous time step

– This is a linear-Gaussian model

Inference in Linear Gaussian Models

• Filtering and smoothing integrals have 
closed form solution

• Elegant solution known as the Kalman filter
– Used for tracking projectiles (radar)
– State is modeled as a set of linear equations

• S=vt
• V=at

– What about pilot controls?

Inference in Hybrid Networks

• Hybrid networks combine discrete and 
continuous variables

• Usually (but not always) a combination 
of discrete and Gaussian variables

• Active area of research:
– Inference recently proven to be NP hard 

even for simple chains (Lerner & Parr 2001)

– Many new approximate inference 
algorithms developed each year
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Related Topics

• Continuous time
– Need to model system using differential equations

• Non-stationarity
– What if the model changes over time?

– This touches on learning

• What about controlling the system w/actions?
– Markov decision processes

HMM Conclusion

• Elegant algorithms for temporal reasoning over discrete atomic 
events, Gaussian continuous variables (many practical systems 
are such)

• Exact Bayes net methods don’t generalize well to state variable 
representation in the the temporal case: little hope for 
exponential savings

• Approximate inference for large systems is an active area of 
research


