

Overview

- Bayes nets are (mostly) atemporal
- Need a way to talk about a world that changes over time
- Necessary for planning
- · Many important applications
 - Target tracking
 - Patient/factory monitoring
 - Speech recognition

Back to Atomic Events

- We began talking about probabilities from the perspective of atomic events
- An atomic event is an assignment to every random variable in the domain
- For n random variables, there are 2ⁿ possible atomic events
- State variables return later (briefly)

States

- When reasoning about time, we often call atomic events states
- States, like atomic events, form a mutually exclusive and jointly exhaustive partition of the space of possible events
- We can describe how a system behaves with a state-transition diagram

The Markov Assumption

- Let S_t be a random variable for the state at time t
- $P(S_t|S_{t-1},...,S_0) = P(S_t|S_{t-1})$
- (Use subscripts for time; S0 is different from S₀)
- · Markov is special kind of conditional independence
- · Future is independent of past given current state

Markov Models

- A system with states that obey the Markov assumption is called a *Markov Model*
- A sequence of states resulting from such a model is called a *Markov Chain*
- The mathematical properties of Markov chains are studied heavily in mathematics, statistics, computer science, electrical engineering, etc.

What's The Big Deal?

- A system that obeys the Markov property can be described succinctly with a transition matrix, where the i,jth entry of the matrix is P(Sj|Si)
- The Markov property ensures that we can maintain this succinct description over a potentially infinite time sequence
- Properties of the system can be analyzed in terms of properties of the transition matrix
 - Steady-state probabilities
 - Convergence rate, etc.

Observations

- Introduce Et for the observation at time t
- Observations are like evidence
- Define the probability distribution over observations as function of current state: P(E|S)
- Assume observations are conditionally independent
 of other variables given current state
- · Assume observation probabilities are stationary

- Smoothing/hindsight
 - Update view of the past based upon future
 - Diagnosis: Factory exploded at time t=20, what happened at t=5 to cause this?
- Most likely explanation
 - What is the most likely sequence of events (from start to finish) to explain what we have seen?

Algebraic View: Our Main Tool $P(A \land B) = P(B \land A)$ $P(A \mid B)P(B) = P(B \mid A)P(A)$ $P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$

Hindsight Summary

- Forward: Compute k state distribution given
 - Forward distribution up to k
 - Observations up to kEquivalent to monitoring up to k
 - Equivalent to monitoring up to k
 Equivalent to eliminating variables <k
- Backward: Compute conditional evidence distribution after k
 - Work backward from t to k
 - Equivalent to to eliminating variables >k
- Smoothed state distribution is proportional to product of forward and backward components

Problem II

Can we revise our estimate of the probability that the student worked at step 1?

We initially thought:

$$P(w_1 | \overline{r}_1) = 0.67, P(\overline{w}_1 | \overline{r}_1) = 0.33$$

Since the student didn't have results at time 2, is it now less likely that he was working at time 1?

	Let's Do More Math
$\begin{split} & P(W_{i+1} \mid W_i) = 0.8 \\ & P(W_{i+1} \mid \overline{W_i}) = 0.3 \\ & P(R \mid W) = 0.6 \\ & P(R \mid \overline{W}) = 0.2 \\ & P(w_i \mid \overline{r_i}) = 0.67 \\ & P(\overline{w_i} \mid \overline{r_i}) = 0.33 \end{split}$	$P(W_1 \bar{r}_2 \bar{r}_1) = \alpha P(W_1 \bar{r}_1) P(\bar{r}_2 W_1)$ $P(\bar{r}_2 W_1) = \sum_{W_2} P(\bar{r}_2 W_2) P(W_2 W_1)$ $P(\bar{r}_2 W_1) = (0.4 * 0.8 + 0.8 * 0.2) = 0.48$ $P(\bar{r}_2 \bar{W}_1) = (0.4 * 0.3 + 0.8 * 0.7) = 0.68$ $P(W_1 \bar{r}_1) = \alpha 0.33 * 0.48 = 0.1584$ $P(\bar{W}_1 \bar{r}_2 \bar{r}_1) = \alpha 0.67 * 0.68 = 0.4556$ $P(W_1 \bar{r}_2 \bar{r}_1) = 0.258, P(\bar{W}_1 \bar{r}_1) = 0.742$

What Happened?

- After one observation, we initially think it is somewhat less likely that the student is working. However, not all working students have results all of the time.
- After two observations, we conclude that the student was much less likely to have been working in the first time step.
- Moral: Never go two meetings without having some results for your adviser.

Checkpoint

- Done: Forward Monitoring and Backward Smoothing
- Monitoring is recursive from the past to the present
- Backward smoothing requires two recursive passes
- Called the forward-backward algorithm
 - Independently discovered many times throughout history
 - Was classified for many years by US Govt.
- Equivalent to doing variable elimination!

What's Left?

- We have seen that filtering and smoothing can be done efficiently, so what's the catch?
- · We're still working at the level of atomic events
- There are too many atomic events!
- We need a generalization of Bayes nets to let us think about the world at the level of state variables and not states

Harsh Reality While BN inference in the static case was a very nice story, there are essentially no tractable, exact algorithms for DBNs Active research area: Approximate inference algorithms Sampling methods

Continuous Variables

- How do we represent a probability distribution over a continuous variable?
 - Probability density function
 - Summations become integrals
- Very messy except for some special cases:
 Distribution over variable X at time t+1 is a multivariate normal with a mean that is a linear function of the variables at the previous time step
 - This is a linear-Gaussian model

Inference in Linear Gaussian Models

- Filtering and smoothing integrals have closed form solution
- Elegant solution known as the Kalman filter – Used for tracking projectiles (radar)
 - State is modeled as a set of linear equations
 - S=vt
 - V=at
 - What about pilot controls?

Inference in Hybrid Networks

- Hybrid networks combine discrete and continuous variables
- Usually (but not always) a combination of discrete and Gaussian variables
- · Active area of research:
 - Inference recently proven to be NP hard even for simple chains (Lerner & Parr 2001)
 - Many new approximate inference algorithms developed each year

Related Topics

- Continuous time
 - Need to model system using differential equations
- Non-stationarity
 - What if the model changes over time?
 - This touches on learning
- What about controlling the system w/actions? – Markov decision processes

HMM Conclusion

- Elegant algorithms for temporal reasoning over discrete atomic events, Gaussian continuous variables (many practical systems are such)
- Exact Bayes net methods don't generalize well to state variable representation in the the temporal case: little hope for exponential savings
- Approximate inference for large systems is an active area of research