
1

Least Squares Policy Iteration

Ronald Parr

CPS 270

Joint work with: Michail Lagoudakis

Overview

• Motivation

• LSPI
– Derivation from LSTD

– Experimental results

Why We Love RL

• Ideally, RL agents:
– Learn continuously by trial and error

– Correctly attribute credit and blame when
causes and effects are not co-temporal

– Converge to optimal behavior

• RL connects to beautiful theory
– Markov Decision Processes (MDPs)

– Convergence of stochastic estimators

Why We Hate RL

• Use for real problems often frustrates

• Reasons:
– Real problems have huge state spaces

• Impossible to visit every state
• Impossible to represent solution exactly

– Approximation methods are dodgy
• Require human intervention
• May not converge
• Sloooooowwwwww debug cycle

The RL World

• For practical problems RL often involves an
“outer loop” with a clever grad student in control:

1. Choose an approximation architecture
2. Run experiments

– Convergence/Oscillation
– Good performance/Bad performance

3. Refine approximation architecture

Consequence: RL rarely applied “live”

Example: TD-Gammon

• Brilliant success for RL
– Plays at level of best human players
– Inspired a generation of RL researchers

• But…
– Required hand crafted features
– Required about 1.5 million games of experience

– Hard to reproduce:
• For other implementations
• For other games

2

What can we do to help?

• Get more/better grad students (hard)
• Automatic approximation architecture selection

• Shorten the cycle
– Provide more stable RL algorithm (LSPI)
– Reduce data dependence (LSPI)

LSPI Teaser

• LSPI is stable and efficient
– Never diverges or gives meaningless answers

– Uses efficient linear algebra routines

• LSPI reuses data
– Remembers past experiences

– All past experiences relevant to all policies

Optimal Value Function, Policy

�

�

+=

+=

'

*

'

**

)'(),|'(),(maxarg)(*

)'(),|'(),(max)(

sa

sa

sVassPasRs

sVassPasRsV

γπ

γ

Optimal value function, policy satisfy Bellman equation:

• If P,R are known, solve MDP:
– VI, PI, LP
– Poly time in number of states

• Otherwise, we use RL

Intuitions for VFA

• Leverage generalization power of machine
learning to produce approximate values for all
states while considering only a tiny fraction

• Dramatic success in some areas
– Backgammon
– Elevator scheduling

• Dramatically frustrating in others…

Implementing VFA

• Can’t represent Value Function as a big vector

• Use (parametric) function approximator
– Neural network
– Linear regression (least squares)

– Nearest neighbor (with interpolation)

• (Typically) sample a subset of the the states

• Use function approximation to “generalize”

Approximate Solutions

• The standard Bellman equation:

• With approximation

• Π is a projection operator
– Projects into space of representable value functions
– Often implicit

�
+=

'

**)'(),|'(),(max)(
sa sVassPasRsV γ

()�
+∏=

'

**)'(ˆ),|'(),(max)(ˆ
sa sVassPasRsV γ

3

Problem 1: Stability

• Exact value iteration, Q-learning stability
ensured by contraction of:

• Is this a contraction:

�
+=+

'

1)'(),|'(),(max)(
s

i
a

i sVassPasRsV γ

()�
+∏=+

'

1)'(ˆ),|'(),(max)(ˆ
s

i
a

i sVassPasRsV γ

?

Stability Problem

Problem: Most VFA methods are unstable

s2
s1

No rewards, γ = 0.9: V* = 0

Example: Bertsekas & Tsitsiklis 1996

Least Squares Approximation

Restrict V to linear functions:

Find θ s.t. V(s1) = θ, V(s2) = 2θ

Counterintuitive Result: If we do a least squares fit of θ
θt+1 = 1.08 θt

s1 s2 S

V(x)

Unbounded Growth of V

1 2

n

S

V(x)

Understanding the Problem

• What went wrong?
– VI reduces error in maximum norm

– Least squares (= projection) non-expansive in L2

– May increase maximum norm distance

– Grows max norm error at faster rate than VI

• Can’t this be fixed by sampling trajectories?
– Yes (VI is also a projection in weighted L2)

– Dubious usefulness for policy improvement!

Problem 2: Efficiency

• Most RL methods are gradient based

• Q-learning:

• Convergence requires:
– Small steps (small α)

– Visiting every state infinitely often

()
),(max),'(

),'(),()1(),(1

asQasV

asVrasQasQ
i

a
i

iii

=
++−=+ γαα

4

Overview

• Motivation

• LSPI
– Derivation from LSTD

– Experimental results

How does LSPI fix these?

• LSPI is based on LSTD
• Policy evaluation alg. by Bratdke & Barto 96
• Stability:

– LSTD directly solves for the fixed point of the
approximate Bellman equation

– With SVD, this is always well defined

• Data efficiency
– LSTD finds best solution for any finite data set
– Single pass over data
– Can be implemented incrementally

OK, What’s LSTD?

• Least Squares Temporal Difference Learning

• Linear value function approximation

• NOT necessarily linear in state variables

• Each hk can be an arbitrary function

• Compare with neural nets

�
=

k kk shwsV)()(ˆ

Deriving LSTD

Note for linear
Algebra fans:

is a linear function
in the column space
of h1…hk

AwV =ˆ

K basis functions

states

h1(s1) h2(s1)...
h1(s2) h2(s2)…
.
.
.

A=

assigns a value to every state

V̂

How much detail do you want?

Suppose we know V*

• Want:

• Projection minimizes squared error

*VAw ≈

*1)(VAAAw TT −=

Textbook least squares projection

But we don’t know V*…

• Require consistency:

• Substituting least squares projection

• Solving for w

()** ˆ),(ˆ VPasRV γ+∏=

()PAwasRAAAAAw TT γ+= −),()(1

RAPAAAAw TTT 1)(−−=

5

Almost there…

• Matrix to invert is only k x k

• But…
– Expensive to construct matrix
– We don’t know P

– We don’t know R

RAPAAAAw TTT 1)(−−=

Using Samples for A

K basis functions

h1(s1) h2(s1)...
h1(s2) h2(s2)…
.
.
.

Idea: Replace enumeration of states with sampled states

states=A samples=Â

Using Samples for PA

K basis functions

h1(s1’) h2(s1’)...
h1(s2’) h2(s2’)…
.
.
.

Idea: Replace expectation over next states with sampled
next states.

s’ from (s,a,r,s’)≈PA

Putting it Together

• LSTD needs to compute:

• The hard part of which is the kxk matrix:

• For each (s,a,r,s’) sample:

RAPAAAAw TTT 1)(−−=

PAAAAB TT −=

)'()()()(shshshshBB jijiijij ++←

LSTD Summary

• Does O(k2) work per datum
• Approaches model-based answer in limit
• Finding fixed point requires inverting matrix

• Fixed point almost always exists
• Can use SVM if B is singular

• Stable; efficient

Policy Iteration with LSTD

Increment i
Repeat until???

Use LSTD here?

Guess),(ˆ wsVi

1+iπ
),(ˆ

1 wsVi+

= greedy()
= value of acting on 1+iπ

),(ˆ wsVi

6

What Breaks?

• No way to pick actions

• Approximation is biased by current policy
– We only approximate values of states we see

– LSTD is a weighted approximation

• Learn-forget cycle of policy iteration
– Drive off the road; learn that it’s bad

– New policy never does this; forgets that it’s bad

LSPI

• LSPI makes LSTD suitable for Policy Iteration

• LSTD: state -> state

• LSPI: (state, action) -> (state, action)
• Similar to Q learning

• Implementation is subtle

• Has deep consequences:
– Disconnects policy evaluation from data collection

– Permits reuse of data across iterations

Implementing LSPI

• Both LSTD and LSPI must compute:

• But LSPI has a factor of (# �) more basis fns

• Duplicate basis functions for each action:
– hi

a1 (s) = hi(s) if a1 taken, 0 otherwise,

– hi
a2 (s) = hi(s) if a2 taken, 0 otherwise,etc

• For each (s,a,r,s’) sample:

PAAAAB TT −=

)'()()()()'(shshshshBB s
j

a
i

a
j

a
iijij

π−+←

Running LSPI

• Start w/random weights (= random policy)

• Collect a database of (s,a,r,s’) experiences

• Repeat
– Evaluate current policy against database

• Run LSPI to generate new set of weights
• New weights imply new policy

– Replace current weights with new weights

• Until convergence (or ε weight change)

Results: Bicycle Riding

• Randlov and Alstrom simulator

• Watch random controller operate bike

• Collect ~60,000 (s,a,r,s’) samples
• Pick 20 simple basis functions (×5 actions)

• Make 5-10 passes over data (PI steps)

• Result:
Controller that balances and rides to goal

Bicycle Trajectories

7

What about Q-learning?

• Bicycle “solved” using CMAC
– CMAC is very expressive

– Trajectories were not that tight

• Compare with same architecture

• Use experience replay for data efficiency

Q-learning Results

LSPI Robustness So, what’s the bad news?

• (k (# �))2 can sometimes be big
– Lots of storage

– Matrix inversion can be expensive

• Linear VFA is “weak”

• Bicycle needed shaping

• Still haven’t solved
– Feature selection

– Exploration vs. Exploitation

