Markov Decision Processes (MDPs)

Ron Parr CPS 270

The Winding Path to RL

- Decision Theory
- Descriptive theory of optimal behavior
- Markov Decision Processes
- Mathematical/Algorithmic realization of Decision Theory
- Reinforcement Learning
- Application of learning techniques to challenges of MDPs with numerous or unknown parameters

Utility Functions

- A *utility function* is a mapping from world states to real numbers
- Also called a value function
- Rational or optimal behavior is typically viewed as maximizing expected utility:

$$\max_{a} \sum_{s} P(s \mid a) U(s)$$

a = actions, s = states

Swept under the rug today...

- Utility of money (assumed 1:1)
- How to determine costs/utilities
- How to determine probabilities

Playing a Game Show

- · Assume series of questions
 - Increasing difficulty
 - Increasing payoff
- · Choice:
 - Accept accumulated earnings and quit
 - Continue and risk losing everything
- "Who wants to be a millionaire?"

Making Optimal Decisions

- · Work backwards from future to present
- Consider \$100,000 question
 - Suppose P(correct) = 1/10
 - V(stop)=\$11,100
 - V(continue) = 0.9*\$0 + 0.1*\$111.1K = \$11,110
- · Optimal decision continues

Decision Theory Review

- Provides theory of optimal decisions
- · Principle of maximizing utility
- Easy for small, tree structured spaces with
 - Known utilities
 - Known probabilities

Dealing with Loops Suppose you can pay \$1000 (from any losing state) to play again 9/10 9/10 \$0 \$100 \$1,100 \$11,100

From Policies to Linear Systems

- Suppose we always pay until we win.
- What is value of following this policy?

$$V(s_0) = 0.10(-1000 + V(s_0)) + 0.90V(s_1)$$

$$V(s_1) = 0.25(-1000 + V(s_0)) + 0.75V(s_2)$$

$$V(s_2) = 0.50(-1000 + V(s_0)) + 0.50V(s_3)$$

$$V(s_3) = 0.90(-1000 + V(s_0)) + 0.10(111100)$$
Return to Start Continue

The MDP Framework

State space: S
Action space: A
Transition function: P
Reward function: R
Discount factor: γ
Policy: π(s) → a

Objective: Maximize expected, discounted return (decision theoretic optimal behavior)

Applications of MDPs

- Al/Computer Science
- Robotic control

(Koenig & Simmons, Thrun et al., Kaelbling et al.)

- Air Campaign Planning (Meuleau et al.)
- Elevator Control (Barto & Crites)
- Computation Scheduling (Zilberstein et al.)
- Control and Automation (Moore et al.)
- Spoken dialogue management (Singh et al.)
- Cellular channel allocation (Singh & Bertsekas)

Applications of MDPs

- Economics/Operations Research
 - Fleet maintenance (Howard, Rust)
 - Road maintenance (Golabi et al.)
 - Packet Retransmission (Feinberg et al.)
 - Nuclear plant management (Rothwell & Rust)

Applications of MDPs

- EE/Control
 - Missile defense (Bertsekas et al.)
 - Inventory management (Van Roy et al.)
 - Football play selection (Patek & Bertsekas)
- Agriculture
 - Herd management (Kristensen, Toft)

The Markov Assumption

- Let S_t be a random variable for the state at time t
- $P(S_t|A_{t-1}S_{t-1},...,A_0S_0) = P(S_t|A_{t-1}S_{t-1})$
- · Markov is special kind of conditional independence
- Future is independent of past given current state

Understanding Discounting

- · Mathematical motivation
 - Keeps values bounded
 - What if I promise you \$0.01 every day you visit me?
- · Economic motivation
 - Discount comes from inflation
 - Promise of \$1.00 in future is worth \$0.99 today
- Probability of dying
 - Suppose ε probability of dying at each decision interval
 - Transition w/prob ϵ to state with value 0
 - Equivalent to 1- ϵ discount factor

Discounting in Practice

- Often chosen unrealistically low
 - Faster convergence
 - Slightly myopic policies
- · Can reformulate most algs for avg reward
 - Mathematically uglier
 - Somewhat slower run time

Value Determination

Determine the value of each state under policy $\boldsymbol{\pi}$

$$V(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s'|s, \pi(s)) V(s')$$

Bellman Equation

$$V(s_1) = 1 + \gamma(0.4V(s_2) + 0.6V(s_3))$$

Matrix Form

$$\mathbf{P} = \begin{pmatrix} P(s_1 \mid s_1, \pi(s_1)) & P(s_2 \mid s_1, \pi(s_1)) & P(s_3 \mid s_1, \pi(s_1)) \\ P(s_1 \mid s_2, \pi(s_2)) & P(s_2 \mid s_2, \pi(s_2)) & P(s_3 \mid s_2, \pi(s_2)) \\ P(s_1 \mid s_3, \pi(s_3)) & P(s_2 \mid s_3, \pi(s_3)) & P(s_3 \mid s_3, \pi(s_3)) \end{pmatrix}$$

$$V = \gamma P_{\pi}V + R$$

How do we solve this system?

Solving for Values

$$\mathbf{V} = \gamma \mathbf{P}_{\pi} \mathbf{V} + \mathbf{R}$$

For moderate numbers of states we can solve this system exacty:

$$\mathbf{V} = (\mathbf{I} - \gamma \mathbf{P}_{\pi})^{-1} \mathbf{R}$$

Guaranteed invertible because $\ensuremath{\gamma} P_\pi$ has spectral radius <1

Iteratively Solving for Values

$$\mathbf{V} = \gamma \mathbf{P}_{\pi} \mathbf{V} + \mathbf{R}$$

For larger numbers of states we can solve this system indirectly:

$$\mathbf{V}^{i+1} = \gamma \mathbf{P}_{\pi} \mathbf{V}^{i} + \mathbf{R}$$

Guaranteed convergent because γP_{π} has spectral radius <1

Establishing Convergence

- · Eigenvalue analysis
- Monotonicity
 - Assume all values start pessimistic
 - One value must always increase
 - Can never overestimate
- · Contraction analysis...

Contraction Analysis

• Define maximum norm

$$||V||_{\cdot\cdot} = \max_{i} V_{i}$$

• Consider V1 and V2

$$\|V_1 - V_2\|_{\mathcal{L}} = \varepsilon$$

• WLOG say

$$V_1 \leq V_2 + \vec{\varepsilon}$$

Contraction Analysis Contd.

• At next iteration for V2:

$$V^{2'} = R + \gamma P V^2$$

For V1

$$V^{1} = R + \gamma P(V^{1}) \le R + \gamma P(V^{2} + \vec{\varepsilon}) = R + \gamma PV^{2} + \gamma P \vec{\varepsilon} = R + \gamma PV^{2} + \gamma \vec{\varepsilon}$$

• Conclude:

$$V^{2'} - V^{1'} \Big|_{\infty} \le \gamma \varepsilon$$

Importance of Contraction

- · Any two value functions get closer
- True value function V* is a fixed point
- Max norm distance from V* decreases exponentially quickly with iterations

$$\|V^0 - V^*\|_{\infty} = \varepsilon \rightarrow \|V^{(n)} - V^*\|_{\infty} \le \gamma^n \varepsilon$$

Finding Good Policies

Suppose an expert told you the "value" of each state:

Improving Policies

- How do we get the optimal policy?
- Need to ensure that we take the optimal action in every state:

$$V(s) = \max_{a} \sum_{s'} R(s, a) + \gamma P(s'|s, a) V(s')$$

Decision theoretic optimal choice given V

Value Iteration

Action 2

We can't solve the system directly with a max in the equation Can we solve it by iteration?

$$V^{\text{\tiny{i+1}}}(s) = \max_{a} \sum_{s'} R(s, a) + \gamma P(s'|s, a) V^{\text{\tiny{i}}}(s')$$

- •Called value iteration or simply successive approximation •Same as value determination, but we can change actions
- •Convergence:
 - Can't do eigenvalue analysis (not linear)
 - Still monotonic

Action 1

- Still a contraction in max norm (exercise)
- Converges exponentially quickly

Optimality

- · VI converges to optimal policy
- · Why?
- · Optimal policy is stationary
- · Why?

Greedy Policy Construction

Pick action with highest expected future value:

$$\pi(s) = \arg\max_{a} R(s, a) + \gamma \sum_{s'} P(s'|s, a) V(s')$$

Expectation over next-state values

$$\pi = \operatorname{greedy}(V)$$

Bootstrapping: Policy Iteration

Idea: Greedy selection is useful even with suboptimal V

Guess V $\pi = \text{greedy}(V)$ V = value of acting on π

Repeat until policy doesn't change

Guaranteed to find optimal policy Usually takes very small number of iterations Computing the value functions is the expensive part

Comparing VI and PI

- V
 - Value changes at every step
 - Policy may change at every step
 - Many cheap iterations
- PI
 - Alternates policy/value udpates
 - Solves for value of each policy exactly
- Fewer, slower iterations (need to invert matrix)
- Convergence
 - Both are contractions in max norm
 - PI is shockingly fast in practice (why?)

Linear Programming

$$V(s) = R(s,a) + \gamma \max_{a} \sum_{s'} P(s'|s,a)V(s')$$

Issue: Turn the non-linear max into a collection of linear constraints

$$\forall s, a : V(s) \ge R(s, a) + \gamma \sum_{s'} P(s'|s, a) V(s')$$

MINIMIZE: $\sum V(s)$

Optimal action has tight constraints

Weakly polynomial; slower than PI in practice.

MDP Difficulties → RL

- MDP operate at the level of states
 - States = atomic events
 - We usually have exponentially (infinitely) many of these
- We assumes P and R are known
- Machine learning to the rescue!
 - Infer P and R (implicitly or explicitly from data)
 - Generalize from small number of states/policies