

- Decision Theory
- Markov Decision Processes
- Reinforcement Learning

The Winding Path to RL

- Descriptive theory of optimal behavior
- Mathematical/Algorithmic realization of Decision Theory
- Application of learning techniques to challenges of MDPs with numerous or unknown parameters

Utility Functions

- A utility function is a mapping from world states to real numbers
- Also called a value function
- Rational or optimal behavior is typically viewed as maximizing expected utility:

$$
\begin{gathered}
\max _{a} \sum_{s} P(s \mid a) U(s) \\
a=\text { actions, s = states }
\end{gathered}
$$

Playing a Game Show

- Assume series of questions
- Increasing difficulty
- Increasing payoff
- Choice:
- Accept accumulated earnings and quit
- Continue and risk losing everything
- "Who wants to be a millionaire?"

Swept under the rug today...

- Utility of money (assumed 1:1)
- How to determine costs/utilities
- How to determine probabilities

Making Optimal Decisions

- Work backwards from future to present
- Consider \$100,000 question
- Suppose P(correct) = 1/10
- V (stop) $=\$ 11,100$
$-\mathrm{V}($ continue $)=0.9^{*} \$ 0+0.1 * \$ 111.1 \mathrm{~K}=\$ 11,110$
- Optimal decision continues

Dealing with Loops

Suppose you can pay $\$ 1000$ (from any losing state) to play again

The MDP Framework

- State space: S
- Action space: A
- Transition function: P
- Reward function: R
- Discount factor: γ
- Policy: $\pi(s) \rightarrow a$

Objective: Maximize expected, discounted return (decision theoretic optimal behavior)

Applications of MDPs

Al/Computer Science

- Robotic control
(Koenig \& Simmons, Thrun et al., Kaelbling et al.)
- Air Campaign Planning (Meuleau et al.)
- Elevator Control (Barto \& Crites)
- Computation Scheduling (Zilberstein et al.)
- Control and Automation (Moore et al.)
- Spoken dialogue management (Singh et al.)
- Cellular channel allocation (Singh \& Bertsekas)

Applications of MDPs
- Economics/Operations Research
- Fleet maintenance (Howard, Rust)
- Road maintenance (Golabi et al.)
- Packet Retransmission (Feinberg et al.)
- Nuclear plant management (Rothwell \& Rust)

The Markov Assumption

- Let S_{t} be a random variable for the state at time t
- $P\left(S_{t} \mid A_{t-1} S_{t-1}, \ldots, A_{0} S_{0}\right)=P\left(S_{t} \mid A_{t-1} S_{t-1}\right)$
- Markov is special kind of conditional independence
- Future is independent of past given current state

Understanding Discounting

- Mathematical motivation
- Keeps values bounded
- What if I promise you $\$ 0.01$ every day you visit me?
- Economic motivation
- Discount comes from inflation
- Promise of $\$ 1.00$ in future is worth $\$ 0.99$ today
- Probability of dying
- Suppose ε probability of dying at each decision interval
- Transition w/prob ε to state with value 0
- Equivalent to $1-\varepsilon$ discount factor

Discounting in Practice

- Often chosen unrealistically low
- Faster convergence
- Slightly myopic policies
- Can reformulate most algs for avg reward
- Mathematically uglier
- Somewhat slower run time

Value Determination

Determine the value of each state under policy π

$$
V(s)=R(s, \pi(s))+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi(s)\right) V\left(s^{\prime}\right)
$$

Bellman Equation
$\mathrm{R}=1$

$$
V\left(s_{1}\right)=1+\gamma\left(0.4 V\left(s_{2}\right)+0.6 V\left(s_{3}\right)\right)
$$

Solving for Values

$$
\mathbf{V}=\gamma \mathbf{P}_{\pi} \mathbf{V}+\mathbf{R}
$$

For moderate numbers of states we can solve this system exacty:

$$
\mathbf{V}=(\underbrace{\mathbf{I}-\gamma \mathbf{P}_{\pi}})^{-1} \mathbf{R}
$$

Guaranteed invertible because $\left\langle\mathbf{P}_{\pi}\right.$ has spectral radius <1
How do we solve this system?

Iteratively Solving for Values

$$
\mathbf{V}=\gamma \mathbf{P}_{\pi} \mathbf{V}+\mathbf{R}
$$

For larger numbers of states we can solve this system indirectly:

$$
\mathbf{V}^{i+1}=\gamma \mathbf{P}_{\pi} \mathbf{V}^{i}+\mathbf{R}
$$

Guaranteed convergent because \mathcal{P}_{π} has spectral radius <1

Establishing Convergence

- Eigenvalue analysis
- Monotonicity
- Assume all values start pessimistic
- One value must always increase
- Can never overestimate
- Contraction analysis...

Contraction Analysis

- Define maximum norm

$$
\|V\|_{\infty}=\max _{i} V_{i}
$$

- Consider V1 and V2

$$
\left\|V_{1}-V_{2}\right\|_{\infty}=\varepsilon
$$

- WLOG say

$$
V_{1} \leq V_{2}+\vec{\varepsilon}
$$

Importance of Contraction

- Any two value functions get closer
- True value function V^{*} is a fixed point
- Max norm distance from V^{*} decreases exponentially quickly with iterations

$$
\left\|V^{0}-V^{*}\right\|_{\infty}=\varepsilon \rightarrow\left\|V^{(n)}-V^{*}\right\|_{\infty} \leq \gamma^{n} \varepsilon
$$

Improving Policies

- How do we get the optimal policy?
- Need to ensure that we take the optimal action in every state:

$$
V(s)=\max _{a} \sum_{s^{\prime}} R(s, a)+\gamma P\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right)
$$

Contraction Analysis Contd.

- At next iteration for V2:

$$
V^{2^{\prime}}=R+\gamma P V^{2}
$$

- For V1
$V^{1^{\prime}}=R+\gamma P\left(V^{1}\right) \leq R+\gamma P\left(V^{2}+\vec{\varepsilon}\right)=R+\gamma P V^{2}+\gamma P \vec{\varepsilon}=R+\gamma P V^{2}+\gamma \vec{\varepsilon}$
- Conclude:

$$
\left\|V^{2^{\prime}}-V^{i}\right\|_{\infty} \leq \gamma \varepsilon
$$

Finding Good Policies

Suppose an expert told you the "value" of each state:

Action 1

Value Iteration

We can't solve the system directly with a max in the equation Can we solve it by iteration?
$V^{i+1}(s)=\max _{a} \sum_{s^{\prime}} R(s, a)+\gamma P\left(s^{\prime} \mid s, a\right) V^{i}\left(s^{\prime}\right)$
-Called value iteration or simply successive approximation -Same as value determination, but we can change actions

-Convergence:

- Can't do eigenvalue analysis (not linear)
- Still monotonic
- Still a contraction in max norm (exercise)
- Converges exponentially quickly

Greedy Policy Construction

Pick action with highest expected future value:
$\pi(s)=\arg \max _{a} R(s, a)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right)$
\qquad
Expectation over next-state values

$$
\pi=\operatorname{greedy}(V)
$$

Bootstrapping: Policy Iteration

Idea: Greedy selection is useful even with suboptimal V

Guess V
Repeat until policy doesn't change

Guaranteed to find optimal policy Usually takes very small number of iterations Computing the value functions is the expensive part

Comparing VI and PI

- VI
- Value changes at every step
- Policy may change at every step
- Many cheap iterations
- PI
- Alternates policy/value udpates
- Solves for value of each policy exactly
- Fewer, slower iterations (need to invert matrix)
- Convergence
- Both are contractions in max norm
- PI is shockingly fast in practice (why?)

Issue: Turn the non-linear max into a collection of linear constraints

$$
\forall s, a: V(s) \geq R(s, a)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right)
$$

MINIMIZE: $\sum_{s} V(s) \quad \begin{aligned} & \text { Optimal action has } \\ & \text { tight constraints }\end{aligned}$
Weakly polynomial; slower than PI in practice.

MDP Difficulties \rightarrow RL

- MDP operate at the level of states
- States = atomic events
- We usually have exponentially (infinitely) many of these
- We assumes P and R are known
- Machine learning to the rescue!
- Infer P and R (implicitly or explicitly from data)
- Generalize from small number of states/policies

