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Neural Networks

CPS 270

Ron Parr

Why Neural Networks?
• Maybe computers should be more brain-like:
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Neural Network Motivation

• Individual neurons are slow, boring

• Brains succeed by using massive parallelism

• Idea:  Copy what works

• Raises many issues:
– Is the computational metaphor suited to the 

computational hardware?
– How do we know if we are copying the important part?
– Are we aiming too low?

Artificial Neural Networks

• Develop abstraction of function of actual neurons

• Simulate large, massively parallel artificial neural 
networks on conventional computers

• Some have tried to build the hardware too

• Try to approximate human learning, robustness to 
noise, robustness to damage, etc.

Use of neural networks

• Trained to pronounce English
– Training set: Sliding window over text, sounds

– 95% accuracy on training set
– 78% accuracy on test set

• Trained to recognize handwritten digits
– >99% accuracy

• Trained to drive 
(Pomerleau’s no-hands across America)
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Neural Network Lore

• Neural nets have been adopted with an almost religious 
fervor within the AI community - several times

• Often ascribed near magical powers by people, usually 
those who know the least about computation or brains

• For most AI people, magic is gone, but neural nets remain 
extremely interesting and useful mathematical objects 

Artificial Neurons
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g can be any function, but usually a smoothed step function
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Threshold Functions
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Network Architectures

• Cyclic vs. Acyclic
– Cyclic is tricky, but more biologically plausible

• Hard to analyze in general
• May not be stable

• Need to assume latches to avoid race conditions

– Hopfield nets:  special type of cyclic net useful 
for associative memory

• Single layer (perceptron)
• Multiple layer

Feedforward Networks

• We consider acyclic networks

• One or more computational layers
• Entire network can be viewed as computing a 

complex non-linear function
• Typical uses in learning:

– Classification (usually involving complex patterns)
– General continuous function approximation

Perceptron
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For now, we assume that g is a simple step function (sgn)
Assume only 1 neuron and one output.
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Perceptron Learning

• We are given a set of inputs A1…An

• T1…Tn is a set of target outputs +1/-1

• θ is our set of weights
• Net(Ai, θ)=output of perceptron given input 

Ai and weights W.

• Error(Ai, θ) = Ti-Net(Ai, θ)
• Goal:  Pick θ to optimize:
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Perceptron Learning Properties

• Good news:
– If there exists a set of weights that will 

correctly classify every example, the 
perceptron learning rule will find it

• Bad news:
– Perceptrons can represent only a small 

class of functions, “linearly separable,” 
functions

Linearly Separable Functions

What is a perceptron really doing?

It checks if a linear combination of the inputs is
greater than a threshold.
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Perceptron asks:  What side of a hyperplane does A lie on?

Q:  How can we change from >0 to >C for arbitrary C?
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Is red linearly separable from green?
Are the circles linearly separable from the squares?

Observations

• Linear separability is fairly weak
• We have other tricks:

– Functions that are not linearly separable in one space, 
may be linearly separable in another space

– If we engineer our inputs to our neural network, then 
we change the space in which we are constructing 
linear separators

– Every function has a linear separator (in some space)

• Perhaps other network architectures will help
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Multilayer Networks

• Once people realized how simple perceptrons were, 
they lost interest in neural networks for a while

• Multilayer networks turn out to be much more 
expressive (with a smoothed step function)
– Use sigmoid, e.g., atanh(θTx) 
– With 2 layers, can represent any continuous function
– With 3 layers, can represent many discontinuous functions

• Tricky part:  How to adjust the weights

Smoothing Things Out
• Consider single-layer case first

• Idea:  Do gradient descent on a smooth error function
• Error function is sum of squared errors
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Back-prop Issues

• Backprop = gradient descent on error function
• Function is nonlinear (= powerful)
• Function is nonlinear (= local minima)
• Big nets:

– Many parameters
• Many optima
• Slow gradient descent

– Biological plausibility ≠ Electronic plausibility

• Many NN experts became experts in numerical 
analysis (by necessity)

Neural Nets in Practice

• Many applications for pattern recognition tasks
• Very powerful representation

– Can overfit
– Can fail to fit with too many parameters, poor features

• Very widely deployed AI technology, but
– Few open research questions
– Connection to biology still uncertain
– Results are hard to interpret

• “Second best way to solve any problem”
– Can do just about anything w/enough twiddling
– Now third or fourth to SVMs, boosting, and ???


