

Why Neural Networks?

• Maybe computers should be more brain-like:

	Computers	Brains
Computational Units	10 ⁹ gates/CPU	10 ¹¹ neurons
Storage Units	10 ¹⁰ bits RAM	10 ¹¹ neurons
	10 ¹³ bits HD	10 ¹⁴ synapses
Cycle Time	10 ⁻⁹ S	10 ⁻³ S
Bandwidth	10 ¹⁰ bits/s*	10 ¹⁴ bits/s
Compute Power	10 ¹⁰ Ops/s	10 ¹⁴ Ops/s

Comments on Blue Gene

- · Blue Gene: World's Fastest Supercomputer
- 360 Teraflops
- Currently at 131,000 processors
- 1013 -> 1014 Ops/s (brain level?)
- 16 TB memory (10¹³ bits)
- 14 Megawatts power (\$1M/year in electricity)
- 2500 sq ft size (nice sized house)
- · Pictures and other details:
- http://domino.research.ibm.com/comm/pr.nsf/pages/rsc.bluegene_2004.html

Neural Network Motivation

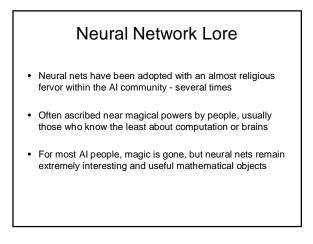
- Individual neurons are slow, boring
- · Brains succeed by using massive parallelism
- · Idea: Copy what works
- · Raises many issues:
 - Is the computational metaphor suited to the computational hardware?
 - How do we know if we are copying the important part?
 - Are we aiming too low?

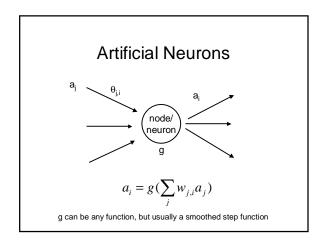
Artificial Neural Networks

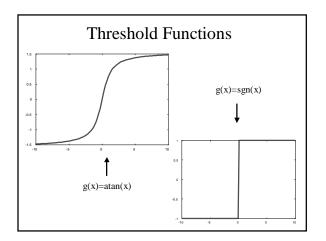
- Develop abstraction of function of actual neurons
- Simulate large, massively parallel artificial neural networks on conventional computers
- · Some have tried to build the hardware too
- Try to approximate human learning, robustness to noise, robustness to damage, etc.

Use of neural networks

- Trained to pronounce English
 - Training set: Sliding window over text, sounds
 - 95% accuracy on training set
 - 78% accuracy on test set
- Trained to recognize handwritten digits
- >99% accuracyTrained to drive
 - (Pomerleau's no-hands across America)





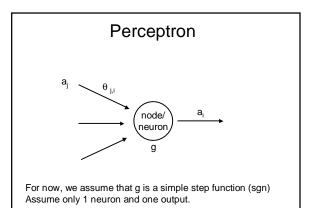


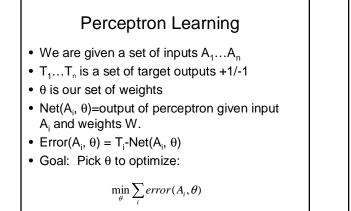
Network Architectures

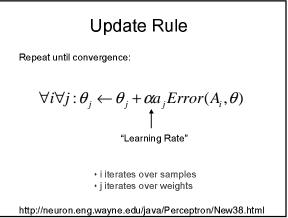
- Cyclic vs. Acyclic
 - Cyclic is tricky, but more biologically plausible
 - Hard to analyze in generalMay not be stable
 - Need to assume latches to avoid race conditions
 - Hopfield nets: special type of cyclic net useful for associative memory
- Single layer (perceptron)
- · Multiple layer

Feedforward Networks

- We consider acyclic networks
- One or more computational layers
- Entire network can be viewed as computing a complex non-linear function
- Typical uses in learning:
 - Classification (usually involving complex patterns)
 - General continuous function approximation







Perceptron Learning Properties Good news: If there exists a set of weights that will correctly classify every example, the perceptron learning rule will find it Bad news: Perceptrons can represent only a small class of functions, "linearly separable," functions

Linearly Separable Functions

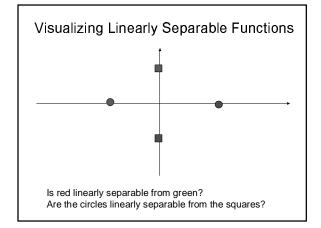
What is a perceptron really doing?

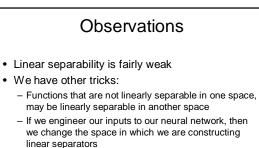
It checks if a linear combination of the inputs is greater than a threshold.

$$\theta_1 a_1 + \theta_2 a_2 \dots \theta_n a_n > 0?$$

Perceptron asks: What side of a hyperplane does A lie on?

Q: How can we change from >0 to >C for arbitrary C?





- Every function has a linear separator (in some space)
- Perhaps other network architectures will help

Multilayer Networks

- Once people realized how simple perceptrons were, they lost interest in neural networks for a while
- Multilayer networks turn out to be much more expressive (with a smoothed step function)
 - Use sigmoid, e.g., $atanh(\theta^T x)$
 - With 2 layers, can represent any continuous function
 With 3 layers, can represent many discontinuous functions
- Tricky part: How to adjust the weights

Smoothing Things Out • Consider single-layer case first • Idea: Do gradient descent on a smooth error function • Error function is sum of squared errors $E = 0.5 \sum_{i} error(X^{(i)}, \theta)^{2} \qquad \begin{array}{c} \cdot \text{ i iterates over samples} \\ \cdot \text{ j iterates over weights} \end{array}$ $\frac{\partial E}{\partial \theta_{j}} = \sum_{i} error(X^{(i)}, \theta) \frac{\partial g(\sum_{k} \theta_{k} x_{k}^{(i)})}{\partial \theta_{j}} \qquad \begin{array}{c} \text{input k for} \\ \text{sample i} \end{array}$ $= \sum_{i} error(X^{(i)}, \theta) g'(\sum_{k} \theta_{k} x_{k}^{(i)}) x_{j}^{(i)}$

Multilayer Case

- Gradient calculation, parameter update have recursive formulation
- Decomposes into:
 Local message passing
 - No transcendentals
- Highly parallelizable
- Biologically plausible(?)
- · Leads to celebrated backpropagation algorithm

Back-prop Issues

- · Backprop = gradient descent on error function
- Function is nonlinear (= powerful)
- Function is nonlinear (= local minima)
- · Big nets:
 - Many parameters
 - Many optima
 - Slow gradient descent
 - Biological plausibility ≠ Electronic plausibility
- Many NN experts became experts in numerical analysis (by necessity)

Neural Nets in Practice

- Many applications for pattern recognition tasks
- Very powerful representation
 - Can overfit
 - Can fail to fit with too many parameters, poor features
- · Very widely deployed AI technology, but
 - Few open research questions
 - Connection to biology still uncertain
 - Results are hard to interpret
- "Second best way to solve any problem"
 - Can do just about anything w/enough twiddling
 - Now third or fourth to SVMs, boosting, and ???