
COMPSCI 270 - Artificial Intelligence

Project III

Robot Localization

Due date: Nov 30
(will be accepted w/o penalty up until Dec 1)

1 Description

In this project you will implement a simple particle filter for robot localization. We have done many
things to make this easy for you, so the actual implementation of the particle filter shouldn’t be more
than a page or two of code.

In this version of the localization problem, everything is discrete to save you the trouble of dealing
with Gaussians and continuous distributions. The robot’s position is a discrete position in a grid, and
the robot’s sensors measure distance in discrete units in the 8 directions: N, NW, W, SW, S, SE, E,
NE. (Check out the comments in the sensor.c file to see how the readings are mapped to physical
directions. You will find some other helpful functions in this file as well.)

In the class directory, you will find code for reading in maps, generating ground truth data, and
generating sensor logs. Your code will need to do the following:

1. Read in a map. (This is trivial because we have already provided code for this.)

2. Read sensor log files of the form generated by runner.c and perform localization using a particle
filter.

3. Output the (weighted) mean and variance of the particle positions at each time step.

4. Produce an image file to visualize the map and occupancy probabilities for each square in the
map. Use brightness or darkness to indicate the probability mass of the particles associated with
a grid square. For example, if the sum of the probabilities of the particles in a square is 0%,
then you would leave the square white. If it’s 25%, then you would color the square 25% of the
way from white to black.

5. Compute the average error per time step of your particle filter.

The README file contains additional information about how to specify noise models and how to
work with the distribution files. You should write you code to accept any noise file and any sensor log.

2 Deliverables

To get full credit for this project, you will need to turn in the following:

• (50 points) A working particle filter implementation.

1



• (10 points) A “sanity check” demonstration that your particle filter tracks correctly when given
a deterministic noise model and data generated from a deterministic noise model. (Show a run
where the error remains 0 over time.)

• (10 points) A demonstration that your particle filter produces reasonable average particle posi-
tions when run with noisy sensors and at least 10 particles. You can show this by graphing the
error over time and showing that it’s within a few squares of truth and that the error doesn’t
grow unreasonably large.

• (10 points) A demonstration that your particle filter can figure out the robot’s position fairly
accurately in the “kidnapped robot” problem. To do this, you will need to start with a very large
number of particles scattered uniformly over your map and then show that they converge to the
correct position. Turn in several images of your particles showing how the start off disperse and
then become concentrated on the true robot position. (Recall the animation shown in class.)
Also show a graph of the error over time.

• (10 points) A graph showing accuracy as a function of particles for 1, 5, 10 and 100 particles.
Demonstrate accuracy by computing the average error for each run (a run is a complete parse
of the sensor data) and then average this over at least 10 runs. Include error bars on your graph
to show variance. (Be sure to indicate what the error bars mean.)

• (10 points) A demonstration of the importance of resampling. Repeat the previous item with
resampling turned off and compare the results.

3 Implementation details

3.1 Odometer

The odometer data are stored as increments from the previous position. For example, an odometry
reading of (+1,+1) indicates that X and Y have both increased by 1 since the last reading. You
should treat the odometer reading as the center of the distribution of possible robot positions. For
example, if the odometer noise model indicates 0 noise with probability 0.6, then your motion model
should accept the odometer reading at face value with probability 0.6. If the odometer noise model
subtracts 1 with probability 0.1, then with probability 0.1, you should subtract 1 from the odometer
reading in your motion model.

3.2 laser

The “laser” in our simulation functions a bit more like sonar. It reads in 8 directions and produces
noisy data. To compute the probability of a laser reading given a simulated robot position, you should
compute the expected sensor reading given the robot position. (You can use our code to do this.) You
should use the laser error model to compute the probability of the reading in comparison to what the
reading should be given your robot position.

If a reading has larger noise than any possible laser error, then the observation should get weight
0. Note that this can cause problems in some cases, such as the kidnapped robot example. In such
a case, it’s possible that no particle will have the correct robot position. This can cause all of your
particles to have weight 0 and can cause divide by 0 errors if you aren’t careful about how you do your
normalization/resampling. A common trick/cheat to avoid this is to avoid assigning 0 probability to
any measurement and assign a very tiny positive probability to even the worst sensor reading. It’s
actually possible to come up with some creative theoretical justifications for this hack, but the main
practical reason is that it prevents some degeneracies in your code.

2



Note that it’s possible to get negative laser readings with some noise models. While these may not
make much sense physically, you can still use them in your particle filter.

Finally, you may notice that it’s possible to simulate robot positions that are physically impos-
sible, e.g., a robot position that places the robot inside of a wall. Deal with this by assigning any
measurement made from inside of wall probability 0.

3


