Reinforcement Learning (Lecture 2)

Ron Parr CPS 270

RL Highlights

- Everybody likes to learn from experience
- Use ML techniques to generalize from relatively small amounts of experience
- Some notable successes:
 - Backgammon
 - Flying a helicopter upside down

 Sutton's seminal RL paper is 42nd most cited paper in computer science (Citeseer 10/05)

Comparison w/Other Kinds of Learning

- Learning often viewed as:
 - Classification (supervised), or
 - Model learning (unsupervised)
- RL is between these (delayed signal)
- What the last thing that happens before an accident?

Overview

- · Review of value determination
- · Motivation for RL
- · Algorithms for RL
 - Overview
 - TD
 - Q-learning
 - Approximation

Recall Our Game Show Start 1 correct 2 correct 2 correct \$100 \$1,000 \$10,000 \$100,000 \$0 \$0 \$0 \$0 \$100 \$1,100 \$11,100

Solving for Values

$$\mathbf{V} = \gamma \mathbf{P}_{\pi} \mathbf{V} + \mathbf{R}$$

For moderate numbers of states we can solve this system exacty:

$$\mathbf{V} = (\mathbf{I} - \gamma \mathbf{P}_{\pi})^{-1} \mathbf{R}$$

Guaranteed invertible because γP_{π} has spectral radius <1

Iteratively Solving for Values

$$\mathbf{V} = \gamma \mathbf{P}_{\pi} \mathbf{V} + \mathbf{R}$$

For larger numbers of states we can solve this system indirectly:

$$\mathbf{V}^{i+1} = \gamma \mathbf{P}_{\pi} \mathbf{V}^{i} + \mathbf{R}$$

Guaranteed convergent because p_{π} has spectral radius <1 for γ <1

Convergence not guaranteed for γ =1

Iterative Policy Evaluation \$111,100 \$-1000 0.00 0.00 0.00 0.00 Iterations -100.00 -250.00 -500.00 10210.00 -335.00 -650.00 4555.00 10120.00 -718.50 3082.50 4392.50 9908.50 2602.40 2864.75 4095.00 9563.35 2738.52 3471.85 5582.88 12552.16

Iterations Contd.				
i=0	0.00	0.00	0.00	0.00
i=1	-100.00	-250.00	-500.00	10210.00
i=2	-335.00	-650.00	4555.00	10120.00
i=3	-718.50	3082.50	4392.50	9908.50
i=4	2602.40	2864.75	4095.00	9563.35
i=5	2738.52	3471.85	5582.88	12552.16
i=20	15697.49	16688.07	18396.47	23621.43
i=100	56740.99	57190.86	58074.31	60999.20
i=200	74658.96	74872.93	75399.39	77318.76
i=1000	82469.80	82580.93	82951.31	84432.82
i=10000	82470.37	82581.48	82951.85	84433.33
Note: Slow convergence b/c γ=1				

Overview

- · Review of value determination
- · Motivation for RL
- · Algorithms for RL
 - Overview
 - TD
 - Q-learning
 - Approximation

Why We Need RL

- · Where do we get transition probabilities?
- · How do we store them?
 - · Big problems have big models
 - · Model size is quadratic in state space size
- · Where do we get the reward function?

RL Framework

- · Learn by "trial and error"
- No assumptions about model
- · No assumptions about reward function
- Assumes:
 - True state is known at all times
 - Immediate reward is known
 - Discount is known

RL Schema

· Perceive results

· Update something

Repeat

RL for Our Game Show

- Problem: Don't know prob of answering correctly
- Solution:
 - Buy the home version of the game
 - Practice on the home game to refine our strategy
 - Deploy strategy when we play the real game

Model Learning Approach

- · Learn model, solve
- How to learn a model:
 - Take action a in state s, observe s'
 - Take action a in state s, n times
 - Observe s' m times
 - -P(s'|s,a) = m/n
 - Fill in transition matrix for each action
 - Compute avg. reward for each state
- · Solve learned model as an MDP

Limitations of Model Learning

- Partitions learning, solution into two phases
- Model may be large (hard to visit every state lots of times)
 - Note: Can't completely get around this problem...
- Model storage is expensive
- Model manipulation is expensive

Overview

- · Review of value determination
- · Motivation for RL
- Algorithms for RL
 - Overview
 - TD
 - Q-learning
 - Approximation

Temporal Difference Learning

- One of the first RL algorithms
- Learn the value of a fixed policy (no optimization; just prediction)
- · Recall iterative value determination:

$$V^{i+1}(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^{i}(s')$$

Problem: We don't know this.

First Idea: Monte Carlo Sampling

· Assume that we have a black box:

- · Count the number of times we see each s'
 - Estimate P(s'|s) for each s'
 - Essentially learns a mini-model for state s
 - Can think of as numerical integration
- · Problem: The world doesn't work this way

Next Idea

• Remember Value Determination:

$$V^{i+1}(s) = R(s, \pi(s)) + \gamma \sum_{i} P(s'|s, \pi(s)) V^{i}(s')$$

• Compute an update as if the observed s' and r were the only possible outcomes:

$$V^{temp}(s) = r + \gamma V^{i}(s')$$

• Make a small update in this direction:

$$V^{i+1}(s) = (1-\alpha)V^{i}(s) + \alpha V^{temp}(s)$$

 $0 < \alpha \le 1$

Idea: Value Function Soup

Suppose: $\alpha = 0.1$

Upon observing s':
•Discard 10% of soup

•Refill with V^{temp}(s)

•Stir

•Repeat

* 5

One vat for each state

$$V^{i+1}(s) = (1-\alpha)V^{i}(s) + \alpha V^{temp}(s)$$

Example: Home Version of Game

Suppose we guess: $V(s_3)=15K$ We play and get the question wrong

V^{temp}=0

 $V(s_3) = (1-\alpha)15K + \alpha 0$

Convergence?

- · Why doesn't this oscillate?
 - e.g. consider some low probability s' with a very high (or low) reward value

- This could still cause a big jump in V(s)

Convergence Intuitions

- Need heavy machinery from stochastic process theory to prove convergence
- · Main ideas:
 - Iterative value determination converges
 - Updates approximate value determination
 - Samples approximate expectation

$$V^{i+1}(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^{i}(s')$$

Ensuring Convergence

- · Rewards have bounded variance
- $0 \le \gamma < 1$
- · Every state visited infinitely often
- · Learning rate decays so that:

$$-\sum_{i}^{\infty} \alpha_{i}(s) = \infty$$

$$-\sum_{i=1}^{\infty}\alpha_{i}^{2}(s) < \infty$$

These conditions are jointly *sufficient* to ensure convergence in the limit with probability 1.

How Strong is This?

- · Bounded variance of rewards: easy
- Discount: standard
- Visiting every state infinitely often: Hmmm...
- · Learning rate: Often leads to slow learning
- · Convergence in the limit: Weak
 - Hard to say anything stronger w/o knowing the mixing rate of the process
 - Mixing rate can be low; hard to know a priori
- Convergence w.p. 1: Not a problem.

Using TD for Control

• Recall value iteration:

$$V^{i+1}(s) = \max_{a} R(s, a) + \gamma \sum_{s'} P(s'|s, a) V^{i}(s')$$

• Why not pick the maximizing **a** and then do:

$$V^{i+1}(s) = (1 - \alpha)V^{i}(s') + \alpha V^{temp}(s')$$

- s' is the observed next state after taking action a

Problems

- · Pick the best action w/o model?
- · Must visit every state infinitely often
 - What if a good policy doesn't do this?
- · Learning is done "on policy"
 - Taking random actions to make sure that all states are visited will cause problems

Q-Learning Overview

- · Want to maintain good properties of TD
- Learns good policies and optimal value function, not just the value of a fixed policy
- Simple modification to TD that learns the optimal policy regardless of how you act! (mostly)

Q-learning

· Recall value iteration:

$$V^{i+1}(s) = \max_{a} R(s, a) + \gamma \sum_{s'} P(s'|s, a) V^{i}(s')$$

· Can split this into two functions:

$$Q^{i+1}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{i}(s')$$
$$V^{i+1}(s) = \max_{a} Q^{i+1}(s,a)$$

Q-learning

- · Store Q values instead of a value function
- · Makes selection of best action easy
- Update rule:

$$Q^{temp}(s,a) = r + \gamma \max_{a'} Q^{i}(s',a')$$

$$Q^{i+1}(s,a) = (1-\alpha)Q^{i}(s,a) + \alpha Q^{temp}(s,a)$$

Q-learning Properties

- · Converges under same conditions as TD
- · Still must visit every state infinitely often
- Separates policy you are currently following from value function learning:

$$Q^{temp}(s,a) = r + \gamma \max_{a'} Q^{i}(s',a')$$

$$Q^{i+1}(s,a) = (1-\alpha)Q^{i}(s,a) + \alpha Q^{temp}(s,a)$$

Value Function Representation

- Fundamental problem remains unsolved:
 - TD/Q learning solves model-learning problem, but
 - Large models still have large value functions
 - Too expensive to store these functions
 - Impossible to visit every state in large models
- Function approximation
 - Use machine learning methods to generalize
 - Avoid the need to visit every state

Function Approximation

- General problem: Learn function f(s)
 - Linear regression
 - Perceptron (single layer neural network)
 - Neural networks
- Idea: Approximate f(s) with g(s,θ)
 - g is some easily computable function of s and θ
 - Try to find θ that minimizes the error in g

Linear Regression

· Define a set of basis functions (vectors)

$$h_1(s), h_2(s)...h_k(s)$$

· Approximate f with a weighted combination of these

$$g(s) = \sum_{i=1}^{k} \theta_{i} h_{i}(s)$$

• Example: Space of quadratic functions:

$$h_1(s) = 1, h_2(s) = s, h_3(s) = s^2$$

· Orthogonal projection minimizes SSE

Updates with Approximation

· Recall regular TD update:

$$V^{i+1}(s) = (1 - \alpha)V^{i}(s) + \alpha V^{temp}(s)$$

• With function approximation:

$$V(s) \approx V(s, \theta)$$
 Vector operations

Update:

$$\theta^{i+1} = \theta^{i} + \alpha (V^{temp} - V(s, \theta)) \nabla_{\theta} V(s, \theta)$$

For linear value functions

· Gradient is trivial:

$$V(s,\theta) = \sum_{j=1}^{k} \theta_j h_j(s)$$

$$\nabla_{\theta_j} V(s,\theta) = h_j(s)$$

Individual

• Update is trivial:

$$\theta_i^{i+1} = \theta_i^i + \alpha(V^{temp} - V(s, \theta))h_i(s)$$

Neural Networks

- s = input into neural network
- w = weights of neural network
- $g(s, \theta)$ = output of network
- · Try to minimize

$$E = \sum_{s} (f(s) - g(s, \theta))^{2}$$

· Compute gradient of error WRT weights

$$\frac{\partial E}{\partial \theta}$$

· Adjust to minimize error

Combining NNs with TD

• Recall TD:

$$V^{temp}(s) = R(s) + \mathcal{W}^{i}(s')$$

$$V^{i+1}(s) = (1-\alpha)V^{i}(s) + \alpha V^{temp}(s)$$

• Compute error function:

$$E = (V^{i}(s, w) - V^{temp}(s, \theta))^{2}$$

• Update:

$$\theta^{i+1} = \theta^i - \alpha \frac{\partial E}{\partial \theta}$$

$$= \theta^{i} + 2\alpha \left[V^{temp}(s,\theta) - V(s,\theta) \right] \frac{\partial V(s,\theta)}{\partial \theta}$$

Gradient-based Updates

$$\begin{split} \theta^{i+1} &= \theta^{i} - \alpha \frac{\partial E}{\partial \theta} \\ &= \theta^{i} + 2\alpha \Big[V^{temp}(s,\theta) - \hat{V}(s,\theta) \Big] \frac{\partial V(s,\theta)}{\partial \theta} \end{split}$$

- Equivalent to one step of backprop with V^{temp} as target
- · Constant factor absorbed into learning rate
- · Table-updates are a special case
- · Perceptron, linear regression are special cases

Properties of approximate RL

- Table-updates are a special case
- · Can be combined with Q-learning
- Convergence not guaranteed
 - Function approximators typically converge to local optimum
 - Convergence NOT guaranteed when combined with RL
 - Chasing a moving target
 - · Errors can compound
- · Success requires very well chosen features

Other Approaches

- TD, Q-learning approximate value iteration
- Typically use parameterized V
- · Can also approximate policy iteration
 - Parameterized space of policies
 - Estimate values from samples
 - Update policy parameters to improve performance

How'd They Do That???

- Helicopter (Ng et al.)

 Approximate policy iteration

 Constrained policy space

 Trained on a simulator

- Backgammon (Tesauro)
 Predecessor: Neuro-Gammon
 Generalize RL to alternating move games (already done by Samuel)
 Neural network value function approximation
 Used TD
 Model was known
 Action space was large
 Exploration/On policy evaluation?
 Carefully selected inputs to neural network
 About 1.5 million games played against self

Swept under the rug...

- · Difficulty of finding good features
- · Partial observability
- Exploration vs. Exploitation

Conclusions

- · Reinforcement learning solves an MDP
- Converges for exact value function representation
- · Can be combined with approximation methods
- · Good results require good features