Reinforcement Learning
(Lecture 2)

Ron Parr
CPS 270

RL Highlights

Everybody likes to learn from experience

Use ML techniques to generalize from
relatively small amounts of experience

* Some notable successes:
— Backgammon -
— Flying a helicopter upside down

From Andrew Ng's home page

 Sutton’s seminal RL paper is 42"d most cited
paper in computer science (Citeseer 10/05)

Comparison w/Other Kinds of Learning
* Learning often viewed as:
— Classification (supervised), or

— Model learning (unsupervised)

» RL is between these (delayed signal)

» What the last thing that happens before
an accident? «

Overview
¢ Review of value determination
* Motivation for RL

* Algorithms for RL
— Overview
- TD
— Q-learning
— Approximation

Recall Our Game Show

Start 1 correct 2 correct 2 correct
$100 $1,000 $10,000 $100,000
O J J J O J
$0 $0 $0 $0

$100 $1,100 $11,100

Optimal Policy w/o Cheating

V=%$3,750 V=%$4,166 V=$5,555 V=$11.1K

O 9/10 3/4 1/2 m 1/10
l ? l ? l l $111,100
$0 $0 $0 $0

$100 $1,100 $11,100

Cheat until you win policy

V=$3.7K V=$4.1K V=$5.6K V=$11.1K Wéo
cheat
Lo | Lo

V=$90.5K V=$90.6K V=$90.9K V=$92.4K
cheat

OLT-O Q 31/4 Q lllzo ll;];lc?ll,loo

$-1000

Solving for Values

V=PV +R

For moderate numbers of states we can solve this system exacty:

V=(1-p,)"R
H_/

Guaranteed invertible because P,
has spectral radius <1

Iteratively Solving for Values

V=JP\V+R

For larger numbers of states we can solve this system indirectly:

Vi+l :yPﬂVi +R

Guaranteed convergent because P,
has spectral radius <1 for y<1

Convergence not guaranteed for y=1

Iterative Policy Evaluation

O gilo O 1/4 O flz O ll;];lci)ll,loo
(1000

0.00 0.00 0.00 0.00| jterations
-100.00] -25000| -500.00| 10210.00
-335.00] -650.00| 4555.00| 10120.00

-718.50 3082.50 4392.50 9908.50
2602.40 2864.75 4095.00 9563.35
2738.52 3471.85 5582.88 12552.16

Iterations Contd.

i=0 0.00 0.00 0.00 0.00
i=1 -100.00 -250.00 -500.00 10210.00
i=2 -335.00 -650.00 4555.00 10120.00
i=3 -718.50 3082.50 4392.50 9908.50
i=4 2602.40 2864.75 4095.00 9563.35
i=5 2738.52 3471.85 5582.88 12552.16

i=20 15697.49 16688.07 18396.47 23621.43

i=100 56740.99 57190.86 58074.31 60999.20

i=200 74658.96 74872.93 75399.39 77318.76

i=1000 82469.80 82580.93 82951.31 84432.82

i=10000 82470.37 82581.48 82951.85 84433.33

Note: Slow convergence b/c y=1

Overview
* Review of value determination
* Motivation for RL

* Algorithms for RL
— Overview
- TD
— Q-learning
— Approximation

Why We Need RL

* Where do we get transition probabilities?

* How do we store them?
« Big problems have big models
« Model size is quadratic in state space size

* Where do we get the reward function?

RL Framework

Learn by “trial and error”

* No assumptions about model

* No assumptions about reward function
* Assumes:

- True state is known at all times

- Immediate reward is known
- Discount is known

RL Schema
R AR
RV
o T "‘_/Q
* Perceive results :\;\I#Zi‘.

« Update something ~ ~72>

-

Repeat

RL for Our Game Show

* Problem: Don’t know prob of answering correctly

* Solution:
— Buy the home version of the game
— Practice on the home game to refine our strategy
— Deploy strategy when we play the real game

Model Learning Approach

* Learn model, solve
* How to learn a model:
— Take action a in state s, observe s’
— Take action a in state s, n times
— Observe s’ m times
- P(s’ls,a) =m/n
- Fill in transition matrix for each action
— Compute avg. reward for each state
* Solve learned model as an MDP

Limitations of Model Learning

Partitions learning, solution into two phases

* Model may be large (hard to visit every state
lots of times)

— Note: Can’t completely get around this problem...
Model storage is expensive
* Model manipulation is expensive

Overview Temporal Difference Learning

» Review of value determination + One of the first RL algorithms
- * Learn the value of a fixed policy
* Motivation for RL (no optimization; just prediction)

« Algorithms for RL * Recall iterative value determination:

— Overview))
-TD V'"(s) =R(s, 7m(s)) + Y P(s|s, m(s)V' (S)
— Q-learning s

— Approximation l

Problem: We don’t know this.

First Idea: Monte Carlo Sampling Next Idea

* Remember Value Determination:

V() = R(s, 71(s) + y) P(S| s, (S)V' (S)

« Assume that we have a black box:

S —’-< s = Compute an update as if the observed s’ and
r were the only possible outcomes:
* Count the number of times we see each s’ V‘e""(s) =r+ W‘ (s)

- Estimate P(s’|s) for each s’
— Essentially learns a mini-model for state s
— Can think of as numerical integration

* Make a small update in this direction:

VI(9) = (1-a)V' (s) +aV'™(s)

* Problem: The world doesn't work this way O<a<1
Idea: Value Function Soup Example: Home Version of Game
Suppose: a =0.1

O)
° l l l l$111,100

Upon observing s’: i $0 $0 $0 $0

-Dispard_ 10% of soup S;civ;;gr

*Refill with Vemp(s) $100 $1,100 $11,100

*Stir

*Repeat Suppose we guess: V(s3)=15K

We play and get the question wrong
V() =(L-a)V'(s)+aV'"™(s) V=0
V(s,) = (1-0)15K + a0

Convergence?

* Why doesn't this oscillate?

— e.g. consider some low probability s’ with a
very high (or low) reward value

— This could still cause a big jump in V(s)

Convergence Intuitions

» Need heavy machinery from stochastic
process theory to prove convergence

» Main ideas:
— lterative value determination converges
— Updates approximate value determination
— Samples approximate expectation

W%$=MSM$+EZHﬂSM$W%ﬂ

Ensuring Convergence

* Rewards have bounded variance
*0=sy<1
« Every state visited infinitely often
« Learning rate decays so that:

X alg=e

—Xal(g<e

These conditions are jointly sufficientto ensure
convergence in the limit with probability 1.

How Strong is This?

Bounded variance of rewards: easy
Discount: standard

Visiting every state infinitely often: Hmmm...
Learning rate: Often leads to slow learning
Convergence in the limit: Weak

— Hard to say anything stronger w/o knowing the mixing rate

of the process
— Mixing rate can be low; hard to know a priori
Convergence w.p. 1: Not a problem.

Using TD for Control

* Recall value iteration:
V'*(s) =max, R(s,a)+y>_P(s|sa)V'(s)
« Why not pick the maximizisng a and then do:
V™(s) = (L-a)V'(s)+aV"™(s)

— s’ is the observed next state after taking action a

Problems

» Pick the best action w/o model?

* Must visit every state infinitely often
— What if a good policy doesn'’t do this?

* Learning is done “on policy”
— Taking random actions to make sure that all
states are visited will cause problems

Q-Learning Overview
+ Want to maintain good properties of TD

* Learns good policies and optimal value
function, not just the value of a fixed policy

» Simple modification to TD that learns the
optimal policy regardless of how you act!
(mostly)

Q-learning
* Recall value iteration:
V() =max, R(s,a) + VZ P(s|s a)V'(s)
* Can split this into two fusnctions:
Q"(sa)=R(s,3)+)2 P(s|sa)V'(s)

Vi+1(s) = maxa QHl(S: a)

Q-learning

» Store Q values instead of a value function
* Makes selection of best action easy
« Update rule:

Q*™(s,a) =r +ymax, Q'(s',a')

Q"(s@)=(1-a)Q (s,a) +aQ"™(s,a)

Q-learning Properties

* Converges under same conditions as TD
« Still must visit every state infinitely often

* Separates policy you are currently following
from value function learning:

Q°™(s,a) =r +ymax, Q'(s,a’)

Q"(s.a)=(1-a)Q (s,:a) +aQ™(s,a)

Value Function Representation

* Fundamental problem remains unsolved:
- TD/Q learning solves model-learning problem, but
— Large models still have large value functions
- Too expensive to store these functions
— Impossible to visit every state in large models

= Function approximation

— Use machine leaming methods to generalize
— Avoid the need to visit every state

Function Approximation

General problem: Learn function f(s)
- Linear regression

— Perceptron (single layer neural network)
- Neural networks

Idea: Approximate f(s) with g(s,0)
- g is some easily computable function of s and 6
- Try to find 8 that minimizes the error in g

Linear Regression

+ Define a set of basis functions (vectors)
hi(s).h,(s)..h(s)

« Approximate f with a weighted combination of these

9(s) =2.6,h;(s)

=1
« Example: Space ofqu%dratic functions:

h(s) =Lhy(s) =s.hy(s) =5

« Orthogonal projection minimizes SSE

Updates with Approximation

* Recall regular TD update:
VI (s) = (L-a)V'(s)+aV'™(s)
« With function approximation:

_ Vector
. Update: Ve / operations

"1 =6 +a(V'™ -V(5,0) 0,V (5,6)

For linear value functions

« Gradient is trivial:
V(s,6)=>6,h(s)
=1

0,V(s.6) =h;(9)

6" =0 +a(V ™ -V(s,6)h (s)

Individual

« Update is trivial: / componenty

Neural Networks

* s = input into neural network
* w = weights of neural network
* g(s, 0) = output of network

* Try to minimize

E=) (f(9-09(s6)f

+ Compute gradient of error WRT weights
o0E
26

* Adjust to minimize error

Combining NNs with TD

* Recall TD: _
VEP(s) = R(s)+ W' (S)

Vii(s) = A-a)V'(s) +aV'™(s)

« Compute error function:

E=(V'(sw)-V(s,6)f
« Update:
oE

g =9 -’
08

=6 + 20l (s,60) -V (s.6)]

V(s,0)
20

Gradient-based Updates

=g _a5£
08

=6+ Za[\/‘e""(s, 6)-V(s, m]%

« Equivalent to one step of backprop with Ve as target
« Constant factor absorbed into learning rate

« Table-updates are a special case

« Perceptron, linear regression are special cases

Properties of approximate RL

Table-updates are a special case
Can be combined with Q-learning

* Convergence not guaranteed

- Convergence NOT guaranteed when combined with RL
* Chasing a moving target
« Errors can compound

* Success requires very well chosen features

- Function approximators typically converge to local optimum

Other Approaches

* TD, Q-learning approximate value iteration
* Typically use parameterized V

» Can also approximate policy iteration
— Parameterized space of policies
— Estimate values from samples
— Update policy parameters to improve performance

How'd They Do That???

+ Helicopter (Ng etal.)
— Approximate policy iteration
— Constrained policy space
— Trained on a simulator

+ Backgammon (Tesauro)
— Predecessor: Neuro-Gammon
— Gereralize RL to alternating move games (already done by Samuel)
— Neural network value function approximation
— Used TD
* Model was known
+ Action space was large
« Exploration/On policy evaluation?
— Carefully selected inputs to neural network
— About 1.5 million games played against self

Swept under the rug...

« Difficulty of finding good features
« Partial observability

» Exploration vs. Exploitation

Conclusions

» Reinforcement learning solves an MDP
Converges for exact value function representation

» Can be combined with approximation methods

Good results require good features

