
1

CPS 270
Search I

Ron Parr

What is Search?

• Search is a basic problem-solving method

• We start in an initial state

• We examine states that are (usually)
connected by a sequence of actions to the
initial state

• We aim to find a solution, which is a
sequence of actions that brings us from the
initial state to the goal state, minimizing cost

Overview

• Problem Formulation

• Uninformed Search
– DFS, BFS, IDDFS, etc.

• Informed Search
– Greedy, A*

• Properties of Heuristics

Problem Formulation

• Four components of a search problem
– Initial State
– Actions

– Goal Test

– Path Cost

• Optimal solution = lowest path cost to goal

Example: Path Planning

1

2

1

1

1

3

3

2
1

1

2

1

Start

Goal

Find shortest route from one city to another using highways.

Example 8(15)-puzzle

8 3 4

1 7

2 6 5

4

1 2

3 5

6 7 8

Possible
Start State

Goal State

Solution

Actions: UP, DOWN, RIGHT, LEFT

2

“Real” Problems

• Robot motion planning

• Drug design
• Logistics

– Route planning

– Tour Planning

• Assembly sequencing

• Internet routing

Why Use Search?

• Other algorithms exist
for these problems:
– Dijkstra’s Algorithm

– Dynamic programming
– All-pairs shortest path

• Use search when it
is too expensive to
enumerate all states

• 8-puzzle has
362,800 states

• 15-puzzle has 1.3
trillion states

• 24-puzzle has 1025

states

Basic Search Concepts

• Assume a tree-structured space (for now)
• Nodes: Places in search tree

(states exist in the problem space)
• Search tree: portion of state space visited so far

• Expansion: Generation of successors for a state

• Frontier: Set of states visited, but not expanded

• Branching factor: Max no. of successors = b
• Goal depth: Depth of shallowest goal = d

Example Search Tree

Frontier

b=2

Generic Search Algorithm

Function Tree-Search(problem, Queuing-Fn)

fringe = Make-Queue(Make-Node(Initial-State(problem)))
loop do

if empty(fringe) then return failure
node = pop(fringe)
if Goal-Test(problem, state) then return node
fringe = Add-To-Queue(fringe, expand(node, problem)

end

Interesting details are in the implementation of Add-To-Queue

Evaluating Search Algorithms

• Completeness:
– Is the algorithm guaranteed to find a solution

when there is one?

• Optimality:
– Does the algorithm find the optimal solution?

• Time complexity

• Space complexity

3

Uninformed Search: BFS

Frontier is a FIFO

1

2 3

4 5 6 7

BFS Properties

• Completeness:

• Optimality:

• Time complexity:

• Space complexity:

Y

Y (for uniform cost)

O(bd+1)

O(bd+1)

Uninformed Search: DFS

Frontier is a LIFO

1

2 5

3 4 6 7

DFS Properties

• Completeness:

• Optimality:

• Time complexity:

• Space complexity:

N (unless tree is finite)

N

O(bm) (m = depth we hit, m>d?)

O(bm)

Iterative Deepening

• Want:
– DFS memory requirements
– BFS optimality, completeness

• Idea:
– Do a depth-limited DFS for depth m

– Iterate over m

IDDFS

1,2,5

3,6 4,9

7 8 10 11

4

IDDFS Properties

• Completeness:

• Optimality:

• Time complexity:

• Space complexity:

Y

Y (whenever BFS is optimal)

O(bd+2)

O(bd)

Proof: Assume the tree bottoms out at depth d, BFS visits:

In the worst case, IDDFS does no more than:
12 1 −+d

)12(2)1()12(12)12(12

00

1

0

1 −<+−−=−=− ++

==

+

=

+
���

dd
d

i

d

i

i
d

i

i d

IDDFS vs. BFS

Theorem: IDDFS visits no more than twice as many nodes
for a binary tree as BFS.

What about b-ary trees? IDDFS relative cost is lower!

Bi-directional Search

Initial
State

Goal

ddd bbb <<+ 2/2/

Issues with Bi-directional Search

• Uniqueness of goal
– Suppose goal is parking your car

– Huge no. of possible goal states
(configurations of other vehicles)

• Invertability of actions

Informed Search

• Idea: Give the search algorithm hints
• Heuristic function: h(x)

• h(x) = estimate of cost to goal from x

• If h(x) is 100% accurate, then we can
find the goal in O(bd) time

Greedy Search

• Expand node with lowest h(x)

• Optimal if h(x) is 100% correct

• How can we get into trouble with this?

5

What Price Greed?

h=1 h=1 h=1 h=1 h=1Initial
State

Goal

h=2

What’s broken with greedy search?

h=1

A*

• Path cost so far: g(x)

• Total cost estimate: f(x) = g(x) + h(x)

• Maintain frontier as a priority queue

• O(bd) time if h is 100% accurate

• We want h to be an admissable heuristic
• Admissable: never overestimates cost

A* Properties

Theorem: A* is optimal if h(x) is admissable.

Proof sketch: Suppose a suboptimal goal node g2 appears on the fringe.
If C* is the optimal cost, f(g2) > C*. Since h never overestimates
the cost, there must exist some unexpanded node along the optimal
path that has not yet been expanded. Thus, as long as we have not
yet found the optimal path, we will continue to expand nodes

Does A* fix the greedy problem?

h=1 h=1 h=1 h=1 h=1Initial
State

Goal

h=2
h=1

Properties of Heuristics

• h2 dominates h1 if h2(x)>h1(x) for all x

• Does this mean that h2 is better?
• Suppose you have multiple admissable

heuristics. How do you combine them?

Developing Heuristics

• Is it hard to develop admissable heuristics?

• What are some heuristics for the 8 puzzle?
• What is a general strategy for developing

admissable heuristics?

6

Other Issues

• Graphs
– What issues arise?
– Monotonicity

• Non-uniform costs

• Accuracy of heuristic

• A* is optimally efficient

