CPS 270
Alternative Search Techniques

Ron Parr

Memory-bounded Search: Why?

We run out of memory before we run out of time.

Problem: Need to remember entire search horizon

Solution: Remember only a partial search horizon

* Issue: Maintaining optimality, completeness
* Issue: How to minimize time penalty

Overview

* Memory-bounded Search
 Local Search

» Searching with Incomplete Information

Attempt 1: IDA*

* |terative deepening A*
 |dea: Like IDDFS, but use the f cost as a cutoff
— Cutoff all searches with f > 1, then f> 2, f > 3, etc.
— Motivation: Cut off bad-looking branches early
* Problems:
— Excessive node regeneration
— Can still use a lot of memory

Attempt 2: RBFS

Recursive best first search
Objective: Linear space

» |dea: Remember best alternative

» Rewind, try alternatives if “best first” path
gets too expensive

* Remember costs on the way back up

h=1]
Cutoff =3 >< h=1

Assume h=1, /
initially along alt=12
this path.

alt=11 \

/—:/ alt=9

alt=13
Replace Return to best alternate.
with alt = 11 /

alt=14

alt=16
\ alt=15
.

h=3

Problem: Thrashing!

SMA*

* Idea: Use all of available memory

Discard the worst leaf when memory starts to
run out, to make room for new leaves

Values get backed up to parents

Optimal if solution fits in memory

Complete

Thrashing still possible Expand
Replace/_’ h=

with h=3 \ =
if we remove)é N

this node

Optimization

* Solution is more important than path
* Interested in minimizing or maximizing
some function of the problem state
— Find TSP tour with minimum cost
— Optimize circuit layout
— Schedule tasks as tightly as possible

« History of visits not worth the trouble

State Space Landscape

2
N
&
o \/
Objective S
function é&
A

value Q

ocal Changes

Problem feature

Goal: Find values of problem features
that maximize objective function.

Note: This is conceptual. Often this function is not smooth.

Hill Climbing

Idea: Try to climb up the state space
landscape to find a setting of the problem
features with high value.

Approaches:

— Steepest ascent

— Stochastic — pick one of the good ones

— First choice

» This is a greedy procedure

Limitations of Hill Climbing

* Local maxima

« Ridges — direction of ascent is at 45
degree angle to any of the local changes
» Plateaux — flat expanses

Getting Unstuck

* Random restarts
» Simulated annealing
— Take downhill moves with small probability
— Probability of moving downhill decreases with
« Number of iterations
« Steepness of downhill move
— If system is “cooled” slowly enough, will find global
optimal w.p. 1
— Motivated by the annealing of metals and glass
« settle into low energy configuration

Genetic Algorithms

GAs are hot in some circles
Biological metaphors to motivate search

Organism is a word from a finite alphabet
(organisms = states)

Fitness of organism measures its performance on
task (fithess = objective)

Uses multiple organisms (parallel search)

Uses mutation (random steps)

Crossover

Crossover is a distinguishing feature of GAs:

Randomly select organisms for “reproduction” in accordance
with their fitness. More “fit” individuals are more likely to
reproduce.

Reproduction involves crossover:

Organism1:[/11001j0010

Organism2(000 10

Offspring: 110011110

Is this a good idea?

Has worked well in some examples

Can be very brittle

— Representations must be carefully engineered
— Sensitive to mutation rate

— Sensitive to details of crossover mechanism
For the same amount of work stochastic
variants of hill climbing often do better

Hard to analyze; needs more rigorous study

Continuous Spaces

In continuous spaces, we don't need to “probe” to
find the values of local changes

If we have a closed-form expression for our
objective function, we can use the calculus

Suppose objective function is: T (X, ¥;, X, Y51 %51 Y3)

Gradient tells us direction and steepness of change

of of of of of of

=)
0%, 0y, 0%, 0y, 0%, 0y,

Following the Gradient

X = (% Y1y Xo1 Y Xa1 Ys)
X « X+alf (X)

For sufficiently small step sizes, this will converge to
aregion around a local optimum.

If gradient is hard to compute:
» Compute empirical gradient
» Compare with classical hill climbing

Accelerating Gradient Ascent

« Many methods for choosing step size
» Newton Raphson method for finding roots:
X « x=9(x)/g'(x)

* Application to gradient ascent:

X < x=0f (X)H*(x)

What's a Hessian?

o°f . o°f
0°%, 0x,0x,
H, =| @ .
02f 02 f
oxox, 0°x,

Searching with Partial Information

Multiple state problems
— Several possible initial states
» Contingency problems
— Several possible outcomes for each action
» Exploration problems

— Outcomes of actions not known a priori,
must be discovered by trying them

State Sets

* |dea:
— Maintain a set of candidate states
— Each search node represents a set of states
— Can be hard to manage if state sets get large

Constrained Optimization

» Don't forget about the easier cases
— If the objective function is linear, things are easier
— If linear constraints, solve as a linear program:
— Maximize:
f(x)
— Subject to:
) Ax<b

— Can be done in polynomial time
— Can solve some quadratic programs in poly time

Example

« In some situations, initial state may not be
detectable
— Suppose sensors for a nuclear reactor fail

— Need safe shutdown sequence despite
ignorance of some aspects of state

 This complicates search enormously

« In the worst case, contingent solution could
cover the entire state space

Searching in Unknown Environments

« What if we don’t know the consequences of
actions before we try them?

 Often called on-line search

» Goal: Minimize competitive ratio

— Actual distance/distance traveled if model known
— Problematic if actions are irreversible

— Problematic if links can have unbounded cost

Conclusions

There are search algorithms for almost every situation

Many problems can be formulated as search

While search is a very general method, it can sometimes
outperform special-purpose methods

