

The Qualification Problem

- Is this a real concern?
- YES!
- Systems that try to avoid dealing with uncertainty tend to be brittle.
- Plans fail
- Finding shortest path to goal isn't that great if the path doesn't really get you to the goal

Understanding Probabilities

- Initially, probabilities are "relative frequencies"
- This works well for dice and coin flips
- For more complicated events, this is problematic
- What is the probability that the democrats will control Congress in 2008?
- This event only happens once
- We can't count frequencies
- Still seems like a meaningful question
- In general, all events are unique
- "Reference Class" problem

Why do we need uncertainty?

- Reason: Sh*t happens
- Actions don't have deterministic outcomes
- Can logic be the "language" of Al ???
- Problem:

General logical statements are almost always false

- Truthful and accurate statements about the world would seem to require an endless list of qualifications
- How do you start a car?
- Call this "The Qualification Problem"

Probabilities

- Natural way to represent uncertainty
- People have intuitive notions about probabilities
- Many of these are wrong or inconsistent
- Most people don't get what probabilities mean
- Finer details of this question still debated

Probabilities and Beliefs

- Suppose I have rolled a die and hidden the outcome
- What is $\mathrm{P}(\mathrm{Die}=3)$?
- Note that this is a statement about a belief, not a statement about the world
- The world is in exactly one state and it is in that state with probability 1.
- Assigning truth values to probability statements is very tricky business
- Must reference speakers state of knowledge

Frequentism and Subjectivism

- Frequentists hold that probabilities must come from relative frequencies
- This is a purist viewpoint
- This is corrupted by the fact that relative frequencies are often unobtainable
- Often requires complicated and convoluted assumptions to come up with probabilities
- Subjectivists: probabilities are degrees of belief - Taints purity of probabilities
- Often more practical

The Middle Ground

- No two events are ever identical, but
- No two events are ever totally unique either
- What is probability that Hillary Clinton will be elected President?
- Women have run for VP before
- People like Hillary Clinton have run before
- Have background knowledge about the electorate

Why probabilities are good

- Subjectivists: probabilities are degrees of belief
- Are all degrees of belief probability?
- Al has used many notions of belief:
- Certainty Factors
- Fuzzy Logic
- Can prove that a person who holds a system of beliefs inconsistent with probability theory can be tricked into accepted a sequence of bets that is guaranteed to lose (Dutch book)

Domains

- In the simplest case, domains are boolean
- In general may include many different values
- Most general case: domains may be continuous
- This introduces some special complications

What are probabilities?

- Probabilities are defined over random variables
- Random variables are usually represented with capitals: X,Y,Z
- Random variables take on values from a finite domain $\mathrm{d}(\mathrm{X}), \mathrm{d}(\mathrm{Y}), \mathrm{d}(\mathrm{Z})$
- We use lower case letters for values from domains
- $X=x$ asserts: RV X has taken on value x
- $P(x)$ is shorthand for $P(X=x)$

Kolmogorov's axioms of probability

- $0<=P(a)<=1$
- $P($ true $)=1 ; P($ false $)=0$
- $P(a$ or $b)=P(a)+P(b)-P(a$ and $b)$
- Subtract to correct for double counting
- This is sufficient to completely specify probability theory for discrete variables
- Continuous variables need density functions

Atomic Events

- When several variables are involved, it is useful to think about atomic events
- An atomic event is a complete assignment to variables in the domain (compare with states in search)
- Atomic events are mutually exclusive
- Exhaust space of all possible events
- For n binary variables, how many unique atomic events are there?

Joint Distributions

- A joint distribution is an assignment of probabilities to every possible atomic event
- We can define all other probabilities in terms of the joint probabilities by marginalization:

$$
\begin{gathered}
P(a)=P(a \wedge b)+P(a \wedge \neg b) \\
P(a)=\sum_{e_{i} \in e(a)} P\left(e_{i}\right)
\end{gathered}
$$

Example

- $\mathrm{P}($ cold \wedge headache $)=0.4$
- $P(\neg$ cold \wedge headache $)=0.2$
- $\mathrm{P}($ cold $\wedge \neg$ headache $)=0.3$
- $\mathrm{P}(\neg$ cold $\wedge \neg$ headache $)=0.1$
- What are P (cold) and P (headache)?

Independence

- If A and B are mutually exclusive:

$$
P(A \vee B)=P(A)+P(B)(W h y ?)
$$

- Examples of independent events:
- Duke winning NCAA, Dem. winning white house
- Two successive, fair coin flips
- My car starting and my stereo working
- etc.

Independence

- If A and B are independent:

$$
P(A \wedge B)=P(A) P(B)
$$

- $\mathrm{P}($ cold \wedge headache $)=0.4$
- $\mathrm{P}(\neg$ cold \wedge headache $)=0.2$
- $\mathrm{P}($ cold $\wedge \neg$ headache $)=0.3$
- $\mathrm{P}(\neg$ cold $\wedge \neg$ headache $)=0.1$
- Are cold and headache independent?

Why Probabilities Are Messy

- Probabilities are not truth-functional
- To compute $\mathrm{P}(\mathrm{a}$ and b$)$ we need to consult the joint distribution
- sum out all of the other variables from the distribution
- It is not a function of $\mathrm{P}(\mathrm{a})$ and $\mathrm{P}(\mathrm{b})$
- It is not a function of $P(a)$ and $P(b)$
- It is not a function of $P(a)$ and $P(b)$
- This fact led to many approximations methods such as certainty factors and fuzzy logic (Why?)
- Neat vs. Scruffy...

The Scruffy Trap

- Reasoning about probabilities correctly requires knowledge of the joint distribution
- This is exponentially large
- Very convenient to assume independence
- Assuming independence when there is not independence leads to incorrect answers
- Examples:
- ANDing symptoms
- ORing symptoms

Probability Solves the Qualification Problem

- P (disease|symptom1)
- This defines the probability of a disease given that we have observed only symptom1
- The conditioning bar indicates that the probability is defined with respect to a particular state of knowledge, not as an absolute thing

Condition with Bayes's Rule

$$
\begin{aligned}
& P(A \wedge B)=P(B \wedge A) \\
& P(A \mid B) P(B)=P(B \mid A) P(A) \\
& P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
\end{aligned}
$$

Conditional Probabilities

- Ordinary probabilities for random variables: unconditional or prior probabilities
- $P(a \mid b)=P(a$ AND $b) / P(b)$
- This tells us the probability of a given that we know only b
- If we know c and d, we can't use $P(a \mid b)$ directly
- Annoying, but solves the qualification problem...

Conditioning and Belief Update

- Suppose we know $\operatorname{P}(A B C D E) \longleftarrow$ Joint
- Observe B=b, update our beliefs:

$$
P(a c d e \mid b)=\frac{P(a b c d e)}{P(b)}=\frac{P(a b c d e)}{\sum_{A C D E} P(A b C D E)}
$$

Let's Play Doctor

- Suppose P (cold) $=0.7, \mathrm{P}($ headache $)=0.6$
- $P($ headache \mid cold $)=0.57$
- What is P (cold|headache)?

$$
\begin{aligned}
& P(c \mid h)=\frac{P(h \mid c) P(c)}{P(h)} \\
& \quad=\frac{0.57 * 0.7}{0.6}=0.665
\end{aligned}
$$

- IMPORTANT: Not always symmetric

Expectation

- Most of us use expectation in some form when we compute averages
- What is the average value of a die roll?
- $(1+2+3+4+5+6) / 6=3.5$

Bias

-What if not all events are equally likely?

- Suppose weighted die makes 62 X more likely that anything else. What is average value of outcome?
- $(1+2+3+4+5+6+6) / 7=3.86$
- Probs: $1 / 7$ for $1 . . .5$, and $2 / 7$ for 6
- $(1+2+3+4+5)^{*} 1 / 7+6 * 2 / 7=3.86$

Expectation in General

- Suppose we have some RV X
- Suppose we have some function $f(X)$
- What is the expected value of $f(X)$?

$$
{\underset{x}{x}} f(x)=\sum_{x} P(X) f(X)
$$

Sums of Expectations

- Suppose we have $f(X)$ and $g(Y)$.
- What is the expected value of $f(X)+g(Y)$?

$$
\begin{aligned}
& E \\
& X Y \\
& f(X)+g(Y)=\sum_{X Y} P(X \wedge Y)(f(X)+g(Y)) \\
&=\sum_{X Y} P(X \wedge Y) f(X)+\sum_{X Y} P(X \wedge Y) g(Y) \\
&=\sum_{X} \sum_{Y} P(X \wedge Y) f(X)+\sum_{Y} \sum_{X} P(X \wedge Y) g(Y) \\
&=\sum_{X}^{X} f(x) \sum_{Y} P(X \wedge Y)+\sum_{Y} g(Y) \sum_{X} P(X \wedge Y) \\
&=\sum_{X} f(x) P(X)+\sum_{Y} g(Y) \sum_{X} P(X \wedge Y) \\
&=E_{X} f(X)+E_{Y} f(Y)
\end{aligned}
$$

