Solving Problems Recursively

- Recursion is an indispensable tool in a programmer’s toolkit
 - Allows many complex problems to be solved simply
 - Elegance and understanding in code often leads to better programs: easier to modify, extend, verify (and sometimes more efficient!!)
 - Sometimes recursion isn’t appropriate, when it’s bad it can be very bad—every tool requires knowledge and experience in how to use it

- The basic idea is to get help solving a problem from coworkers (clones) who work and act like you do
 - Ask clone to solve a simpler but similar problem
 - Use clone’s result to put together your answer
- Need both concepts: call on the clone and use the result

Exponentiation

- Computing \(x^n \) means multiplying \(n \) numbers (or does it?)
 - What’s the easiest value of \(n \) to compute \(x^n \)?
 - If you want to multiply only once, what can you ask a clone?

  ```java
  public static double power(double x, int n){
    if (n == 0){
      return 1.0;
    }
    return x * power(x, n-1);
  }
  ``

  - What about an iterative version?

Print words entered, but backwards

- Can use an ArrayList, store all the words and print in reverse order
  - Probably the best approach, recursion works too
    ```java
 public void printReversed(Scanner s){
 if (s.hasNext()){
 // reading succeeded?
 String word = s.next(); // store word
 printReversed(s); // print rest
 System.out.println(word); // print the word
 }
 }
    ```
  - The function `printReversed` reads a word, prints the word only after the clones finish printing in reverse order
    - Each clone has own version of the code, own `word` variable
    - Who keeps track of the clones?
    - How many words are created when reading \( N \) words?
      - What about when ArrayList<String> used?

Faster exponentiation

- How many recursive calls are made to compute \( 2^{1023} \)?
  - How many multiplies on each call? Is this better?

  ```java
 public static double power(double x, int n){
 if (n == 0){
 return 1.0;
 }
 double semi = power(x, n/2);
 if (n % 2 == 0) {
 return semi*semi;
 }
 return x * semi * semi;
 }
  ```

  - What about an iterative version of this function?
Back to Recursion

- Recursive functions have two key attributes
  - There is a base case, sometimes called the exit case, which does not make a recursive call
    - See print reversed, exponentiation
  - All other cases make a recursive call, with some parameter or other measure that decreases or moves towards the base case
    - Ensure that sequence of calls eventually reaches the base case
    - “Measure” can be tricky, but usually it’s straightforward

- Example: sequential search in an array
  - If first element is search key, done and return
  - Otherwise look in the “rest of the array”
  - How can we recurse on “rest of array”? 

Thinking recursively

- Problem: find the largest element in an array
  - Iteratively: loop, remember largest seen so far
  - Recursive: find largest in [1..n], then compare to 0th element

```
public static double max(double[] a){
 double maxSoFar = a[0];
 for(int k=1; k < a.length; k++) {
 maxSoFar = Math.max(maxSoFar,a[k]);
 }
 return maxSoFar;
}
```

- In a recursive version, what is base case, what is measure of problem size that decreases (towards base case)?

Recursive Max

```
public static double recMax(double[] a, int index){
 if (index == a.length-1) // last element, done
 return a[index];
 double maxAfter = recMax(a,index+1);
 return Math.max(a[index],maxAfter);
}
```

- What is base case (conceptually)?
- Do we need variable maxAfter?
- We can use recMax to implement arrayMax as follows

```
public static double recMax(double[] a, int index){
 if (index == a.length-1) // last element, done
 return a[index];
 double maxAfter = recMax(a,index+1);
 return Math.max(a[index],maxAfter);
}
```

- What is base case (conceptually)?
- Do we need variable maxAfter?
- We can use recMax to implement arrayMax as follows

```
public static double recMax(double[] a, int index){
 if (index == a.length-1) // last element, done
 return a[index];
 double maxAfter = recMax(a,index+1);
 return Math.max(a[index],maxAfter);
}
```

Recognizing recursion:

```
public static void change(String[] a, int first, int last){
 if (first < last) {
 String temp = a[first]; // swap a[first], a[last]
 a[first] = a[last];
 a[last] = temp;
 change(a, first+1, last-1);
 }
}
```

- original call (why?): change(a, 0, a.length-1);
- What is base case? (no recursive calls)
- What happens before recursive call made?
- How is recursive call closer to the base case?
More recursion recognition

```java
public static int value(int[] a, int index){
 if (index < a.length) {
 return a[index] + value(a, index+1);
 }
 return 0;
} // original call: int v = value(a, 0);
```

- What is base case, what value is returned?
- How is progress towards base case realized?
- How is recursive value used to return a value?
- What if a is array of doubles, does anything change?

Analysis: Algorithms and Data Structures

- We need a vocabulary to discuss performance and to reason about alternative algorithms and implementations
  - It's faster! It's more elegant! It's safer! It's cooler!
- We need empirical tests and analytical/mathematical tools
  - Given two methods, which is better? Run them to check.
    - 30 seconds vs. 3 seconds, easy. 5 hours vs. 2 minutes, harder
    - What if it takes two weeks to implement the methods?
  - Use mathematics to analyze the algorithm,
  - The implementation is another matter, cache, compiler optimizations, OS, memory,...

Recursion and recurrences

- Why are some functions written recursively?
  - Simpler to understand, but ...
  - Mt. Everest reasons
- Are there reasons to prefer iteration?
  - Better optimizer: programmer/scientist v. compiler
  - Six of one? Or serious differences
    - “One person’s meat is another person’s poison”
    - “To each his own”, “Chacun a son gout”, ...
- Complexity (big-Oh) for iterative and recursive functions
  - How to determine, estimate, intuit
What’s the complexity of this code?

```
// first and last are integer indexes, list is List
int lastIndex = first;
Comparable pivot = list.get(first);
for (int k=first+1; k <= last; k++) {
 Comparable ko = list.get(k);
 if (ko.compareTo(pivot) <= 0) {
 lastIndex++;
 Collections.swap(list, lastIndex, k);
 }
}
```

- What is big-Oh cost of a loop that visits n elements of a vector?
  - Depends on loop body, if body O(1) then ...
  - If body is O(n) then ...
  - If body is O(k) for k in [0..n) then ...

Different measures of complexity

- **Worst case**
  - Gives a good upper-bound on behavior
  - Never get worse than this
  - Drawbacks?

- **Average case**
  - What does average mean?
  - Averaged over all inputs? Assuming uniformly distributed random data?
  - Drawbacks?

- **Best case**
  - Linear search, useful?

FastFinder.findHelper

```
private Object findHelper(ArrayList<Comparable> list,
 int first, int last, int kindex) {
 int lastIndex = first;
 Comparable pivot = list.get(first);
 for (int k=first+1; k <= last; k++) {
 Comparable ko = list.get(k);
 if (ko.compareTo(pivot) <= 0) {
 lastIndex++;
 Collections.swap(list, lastIndex, k);
 }
 }
 Collections.swap(list, lastIndex, first);
 if (lastIndex == kindex) return list.get(lastIndex);
 return findHelper(list, first, lastIndex-1, kindex);
}
```

Multiplying and adding big-Oh

- **Suppose we do a linear search then we do another one**
  - What is the complexity?
  - If we do 100 linear searches?
  - If we do n searches on a vector of size n?

- **What if we do binary search followed by linear search?**
  - What are big-Oh complexities? Sum?
  - What about 50 binary searches? What about n searches?

- **What is the number of elements in the list (1,2,2,3,3,3)?**
  - What about (1,2,2, ..., n,n,...,n)?
  - How can we reason about this?
Helpful formulae

- We always mean base 2 unless otherwise stated
  - What is \( \log(1024) \)?
  - \( \log(xy) = \log(x) + \log(y) \)
  - \( \log(x^y) = y \log(x) \)
  - \( n \log(2) = n \times 2 \log n \)

- Sums (also, use sigma notation when possible)
  - \( 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} \)
  - \( \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \)
  - \( \sum_{i=0}^{k} 2^i = 2^{k+1} - 1 \)

Recursion Review

- Recursive functions have two key attributes
  - There is a base case, sometimes called the exit case, which does not make a recursive call
  - All other cases make recursive call(s), the results of these calls are used to return a value when necessary
    - Ensure that every sequence of calls reaches base case
    - Some measure decreases/moves towards base case
    - “Measure” can be tricky, but usually it’s straightforward

- Example: sequential search in an ArrayList
  - If first element is search key, done and return
  - Otherwise look in the “rest of the list”
  - How can we recurse on “rest of list”?

Sequential search revisited

- What is complexity of sequential search? Of code below?

```java
boolean search(ArrayList< Object > list, int first, Object target) {
 if (first == list.size()) return false;
 else if (list.get(first).equals(target))
 return true;
 else return search(list, first+1, target);
}
```

- Why are there three parameters? Same name good idea?

```java
boolean search(ArrayList list, Object target){
 return search(list,0,target);
}
```

Why we study recurrences/complexity?

- Tools to analyze algorithms
- Machine-independent measuring methods
- Familiarity with good data structures/algorithms

- What is CS person: programmer, scientist, engineer?
  - scientists build to learn, engineers learn to build

- Mathematics is a notation that helps in thinking, discussion, programming
**Recurrences**

- **Summing Numbers**
  ```java
 int sum(int n)
 {
 if (0 == n) return 0;
 else return n + sum(n-1);
 }
  ```

- **What is complexity? justification?**
  - T(n) = time to compute sum for n
    - T(n) = T(n-1) + 1
    - T(0) = 1

- **instead of 1, use O(1) for constant time**
  - independent of n, the measure of problem size

**Solving recurrence relations**

- **plug, simplify, reduce, guess, verify?**
  - T(n) = T(n-1) + 1
  - T(0) = 1
  
  - T(n-1) = T(n-1-1) + 1
  - T(n) = [T(n-3) + 1] + 1 = T(n-3)+3

- find the pattern!
  - Now, let k=n, then T(n) = T(0)+n = 1+n

- **get to base case, solve the recurrence: O(n)**

**Complexity Practice**

- **What is complexity of Build? (what does it do?)**
  ```java
 ArrayList<Integer> build(int n)
 {
 if (0 == n) return new ArrayList<Integer>(); // empty
 ArrayList<Integer> list = build(n-1);
 for(int k=0;k < n; k++){
 list.add(n);
 }
 return list;
 }
  ```

- **Write an expression for T(n) and for T(0), solve.**

**Recognizing Recurrences**

- **Solve once, re-use in new contexts**
  - T must be explicitly identified
  - n must be some measure of size of input/parameter
    - T(n) is the time for quicksort to run on an n-element vector

- T(n) = T(n/2) + O(1) binary search O(log n)
- T(n) = T(n-1) + O(1) sequential search O(n)
- T(n) = 2T(n/2) + O(1) tree traversal O(n)
- T(n) = 2T(n/2) + O(n) quicksort O(n log n)
- T(n) = T(n-1) + O(n) selection sort O(n^2)

- **Remember the algorithm, re-derive complexity**