Rotations and balanced trees

- **Height-balanced trees**
 - For every node, left and right subtree heights differ by at most 1
 - After insertion/deletion need to rebalance
 - Every operation leaves tree in a balanced state: *invariant property of tree*

- **Find deepest node that’s unbalanced then make sure:**
 - On path from root to inserted/deleted node
 - Rebalance at this unbalanced point only

Are these trees height-balanced?

What is complexity?

- Assume trees are “balanced” in analyzing complexity
 - Roughly half the nodes in each subtree
 - Leads to easier analysis

- **How to develop recurrence relation?**
 - What is $T(n)$?
 - What other work is done?

- **How to solve recurrence relation**
 - Plug, expand, plug, expand, find pattern
 - A real proof requires induction to verify correctness

Balanced trees we won’t study

- **B-trees are used when data is both in memory and on disk**
 - File systems, really large data sets
 - Rebalancing guarantees good performance both asymptotically and in practice. Differences between cache, memory, disk are important

- **Splay trees rebalance during insertion and during search, nodes accessed often more closer to root**
 - Other nodes can move further from root, consequences?
 - Performance for some nodes gets better, for others ...
 - No guarantee running time for a single operation, but guaranteed good performance for a sequence of operations, this is good *amortized* cost (vector push_back)

Balanced trees we will study

- **Both kinds have worst-case $O(\log n)$ time for tree operations**
- **AVL (Adel’son-Velskii and Landis), 1962**
 - Nodes are “height-balanced”, subtree heights differ by 1
 - Rebalancing requires per-node bookkeeping of height
 - http://www.seanet.com/users/arsen/avltree.html

- **Red-black tree uses same rotations, but can rebalance in one pass, contrast to AVL tree**
 - In AVL case, insert, calculate balance factors, rebalance
 - In Red-black tree can rebalance on the way down, code is more complex, but doable
 - Standard java.util.TreeMap/TreeSet use red-black
Rotation to rebalance

- When a node N (root) is unbalanced height differs by 2 (must be more than one)
 - Change N.left.left
 - doLeft
- Change N.left.right
 - doLeftRight
- Change N.right.left
 - doRightLeft
- First/last cases are symmetric
- Middle cases require two rotations
 - First of the two puts tree into doLeft or doRight

Node doLeft(Node root)
{
 Node newRoot = root.left;
 root.left = newRoot.right;
 newRoot.right = root;
 return newRoot;
}

Rotation up close (doLeft)

- Why is this called doLeft?
 - N will no longer be root, new value in left.left subtree
 - Left child becomes new root
- Rotation isn’t “to the left”, but rather “brings left child up”
 - doLeftChildRotate?

Node doLeft(Node root)
{
 Node newRoot = root.left;
 root.left = newRoot.right;
 newRoot.right = root;
 return newRoot;
}

Rotation to rebalance

- Suppose we add a new node in right subtree of left child of root
 - Single rotation can’t fix
 - Need to rotate twice
 - First stage is shown at bottom
 - Rotate blue node right
 - (its right child takes its place)
 - This is left child of unbalanced

Node doRight(Node root)
{
 Node newRoot = root.right;
 root.right = newRoot.left;
 newRoot.left = root;
 return newRoot;
}

Double rotation complete

- Calculate where to rotate and what case, do the rotations
 - Node doRight(Node root)
 {
 Node newRoot = root.right;
 root.right = newRoot.left;
 newRoot.left = root;
 return newRoot;
 }
 - Node doLeft(Node root)
 {
 Node newRoot = root.left;
 root.left = newRoot.right;
 newRoot.right = root;
 return newRoot;
 }