CPS 196.2

Kidney exchanges
(largely follows Abraham, Blum, Sandholm 2007 paper)

Vincent Conitzer
conitzer@cs.duke.edu
Kidney transplants

- **Kidneys** filter waste from blood
- Kidney failure results in death in months
- **Dialysis**: regularly get blood filtered in hospital using external machine
 - Low quality of life
- Preferred option: kidney transplant
 - Cadaver kidneys
 - Donation from live patient (better)
- Must be compatible
- Shortage of kidneys…
An imaginary kidney exchange with money

patient 1
bids $7000

patient 2
bids $8000

patient 3
bids $9000

patient 4
bids $6000

“donor” 1
asks $6000

donor 2
asks $4000

donor 3
asks $7000

donor 4
asks $5000
Selling kidneys is illegal!

- Large international black market
 - Desperate people on both ends…

- What can we do legally?
Kidney exchange

patient 1

patient 2

donor 1
(patient 1’s friend)

donor 2
(patient 2’s friend)
Kidney exchange (3-cycle)

- Patient 1
 - Donor 1
 - Patient 1’s friend
- Patient 2
 - Donor 2
 - Patient 2’s friend
- Patient 3
 - Donor 3
 - Patient 3’s friend
Another example

patient 1

patient 2

patient 3

patient 4

donor 1
(patient 1’s friend)

donor 2
(patient 2’s friend)

donor 3
(patient 3’s friend)

donor 4
(patient 4’s friend)
More complex example

patient 1

patient 2

patient 3

patient 4

donor 1 (patient 1’s friend)

donor 2 (patient 2’s friend)

donor 3 (patient 3’s friend)

donor 4 (patient 4’s friend)
Solving kidney exchange as maximum weighted bipartite matching

- Patient 1
 - Donor 1 (patient 1’s friend)
 - 0

- Patient 2
 - Donor 2 (patient 2’s friend)
 - 1

- Patient 3
 - Donor 3 (patient 3’s friend)
 - 1

- Patient 4
 - Donor 4 (patient 4’s friend)
 - 1

- Matrix:

<table>
<thead>
<tr>
<th></th>
<th>Patient 1</th>
<th>Patient 2</th>
<th>Patient 3</th>
<th>Patient 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donor 1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Donor 2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Donor 3</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Donor 4</td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Which solution is better?

Patient 1
(patient 1’s friend)

Patient 2
(patient 2’s friend)

Patient 3
(patient 3’s friend)

Patient 4
(patient 4’s friend)
Long cycles are impractical

• All patients in a cycle must be operated on simultaneously
 – Otherwise donor can wait for friend to receive kidney, then back out
 – Contracts to donate an organ not binding

• If last-minute test reveals incompatibility, whole thing falls apart

• Require each cycle has length at most k
Different representation

- Patient 1
 - Donor 1 (patient 1’s friend)

- Patient 2
 - Donor 2 (patient 2’s friend)

- Patient 3
 - Donor 3 (patient 3’s friend)

- Patient 4
 - Donor 4 (patient 4’s friend)

Edge from i to j = patient i wants donor j’s kidney
Different representation

patient 1

patient 2

patient 3

patient 4

donor 1
(patient 1’s friend)

donor 2
(patient 2’s friend)

donor 3
(patient 3’s friend)

donor 4
(patient 4’s friend)

edge from i to j = patient i wants donor j’s kidney
Market clearing problem

• Try to cover as many vertices as possible with (vertex-)disjoint cycles of length at most k

\[k = 2 \quad k = 3 \quad k = 2, 3 \]
Market clearing problem

- Try to cover as many vertices as possible with (vertex-)disjoint cycles of length at most k
Special case: k=2

- If edges go in both directions, replace by undirected edge
- Remove other edges

• Maximum matching problem!
Complexity

- $k = 2$: in P by maximum matching
- $k = \text{number of vertices (no constraint)}$: in P by maximum weighted bipartite matching
- $k = 3, 4, 5, \ldots$: NP-hard!
An integer programming formulation

• For each edge from i to j, make a binary variable \(x_{ij} \)
 – 1 if i gets j’s kidney, 0 otherwise

• maximize \(\Sigma_{ij} x_{ij} \)

• subject to:
 • for every i: \(\Sigma_j x_{ij} = \Sigma_j x_{ji} \)
 – (number of kidneys received by i = number of kidneys given by i)
 • for every j: \(\Sigma_i x_{ij} \leq 1 \)
 – (j gives at most 1 kidney)
 • for every path \(i_1 i_2 \ldots i_k i_{k+1} \) with \(i_1 \neq i_{k+1} \): \(\Sigma_{1 \leq j \leq k} x_{ij_{j+1}} \leq k-1 \)
 – (no path of length k that doesn’t end up where it started, hence no cycles greater than k)
Another integer programming formulation
(turns out better)

• For each cycle c of length at most k, make a binary variable x_c
 – 1 if all edges on this cycle are used, 0 otherwise
• maximize $\sum |c|x_c$
• subject to:
• for every vertex i: $\sum_{c: i \in c} x_c \leq 1$
 – (every vertex in at most one used cycle)
Program size

- Even for small k, number of paths/cycles is too large in reasonably large exchanges
- Solution: generate constraints/variables on the fly during solving
 - Constraint/column generation
Another integer program (not in paper)

- Say an “event” is a set of simultaneous operations
- Denote events by \(t = 1, \ldots, T \) (how big should \(T \) be?)
- For each edge from \(i \) to \(j \), for each \(t \), make a binary variable \(x_{ijt} \)
 - 1 if \(i \) gets \(j \)'s kidney in event \(t \), 0 otherwise
- maximize \(\sum_{i,j,t} x_{ijt} \)
- subject to:
 - for every \(i, t \): \(\sum_j x_{ijt} = \sum_j x_{jit} \)
 - (number of kidneys received by \(i \) in event \(t \) = number of kidneys given by \(i \) in event \(t \))
 - for every \(j \): \(\sum_i, t x_{ijt} \leq 1 \)
 - (\(j \) gives at most 1 kidney overall)
 - for every \(t \): \(\sum_i, j x_{ijt} \leq k \)
 - (at most \(k \) operations per event)
Other applications

• Barter exchanges: agents want to swap items without paying money
• Peerflix (DVDs)
• Read It Swap It (books)
• Intervac (holiday houses)
• National odd shoe exchange
 – People with different foot sizes
 – Amputees