CPS 196.2

Computational problems, algorithms, runtime, hardness
(a ridiculously brief introduction to theoretical computer science)

Vincent Conitzer
Set Cover (a computational problem)

• We are given:
 – A finite set $S = \{1, \ldots, n\}$
 – A collection of subsets of S: S_1, S_2, \ldots, S_m

• We are asked:
 – Find a subset T of $\{1, \ldots, m\}$ such that $\bigcup_{j \in T} S_j = S$
 – Minimize $|T|$

• Decision variant of the problem:
 – we are additionally given a target size k, and
 – asked whether a T of size at most k will suffice

• One instance of the set cover problem:
 $S = \{1, \ldots, 6\}$, $S_1 = \{1,2,4\}$, $S_2 = \{3,4,5\}$, $S_3 = \{1,3,6\}$, $S_4 = \{2,3,5\}$, $S_5 = \{4,5,6\}$, $S_6 = \{1,3\}$
Visualizing Set Cover

• $S = \{1, \ldots, 6\}$, $S_1 = \{1,2,4\}$, $S_2 = \{3,4,5\}$, $S_3 = \{1,3,6\}$, $S_4 = \{2,3,5\}$, $S_5 = \{4,5,6\}$, $S_6 = \{1,3\}$
Algorithms and runtime

• We saw:
 – the runtime of glpsol on set cover instances increases rapidly as the instances’ sizes increase
 – if we drop the integrality constraint, can scale to larger instances

• Questions:
 – Using glpsol on our integer program formulation is but one algorithm – maybe other algorithms are faster?
 • different formulation; different optimization package (e.g. CPLEX); simply going through all the combinations one by one; …
 – What is “fast enough”?
 – Do (mixed) integer programs always take more time to solve than linear programs?
 – Do set cover instances fundamentally take a long time to solve?
Polynomial time

- Let \(|x|\) be the size of problem instance \(x\) (e.g. the size of the file in the .lp language)
- Let \(a\) be an algorithm for the problem
- Suppose that for any \(x\), runtime\((a,x)\) < \(cf(|x|)\) for some constant \(c\) and function \(f\)
 Then we say algorithm \(a\)’s runtime is \(O(f|x|)\)
- \(a\) is a polynomial-time algorithm if it is \(O(f(|x|))\) for some polynomial function \(f\)
- \(P\) is the class of all problems that have at least one polynomial-time algorithm
- Many people consider an algorithm efficient if and only if it is polynomial-time
Two algorithms for a problem

Algorithm 1 is \(O(n^2) \) (a polynomial-time algorithm)
Algorithm 2 is not \(O(n^k) \) for any constant \(k \) (not a polynomial-time algorithm)

The problem is in P
Linear programming and (mixed) integer programming

• LP and (M)IP are also computational problems
• LP is in P
 – Ironically, the most commonly used LP algorithms are not polynomial-time (but “usually” polynomial time)
• (M)IP is not known to be in P
 – Most people consider this unlikely
Reductions

• Sometimes you can reformulate problem A in terms of problem B (i.e. reduce A to B)
 – E.g. we have seen how to formulate several problems as linear programs

• In this case problem A is at most as hard as problem B
 – Since LP is in P, all problems that we can formulate using LP are in P
 – Caveat: only true if the linear program itself can be created in polynomial time!
NP

• Recall: decision problems require a yes or no answer
• NP: the class of all decision problems such that if the answer is yes, there is a simple proof of that
• E.g. “does there exist a set cover of size k?”
• If yes, then just show which subsets to choose!

• Technically:
 – The proof must have polynomial length
 – The correctness of the proof must be verifiable in polynomial time
P vs. NP

- **Open problem**: is it true that P=NP?
- The most important open problem in theoretical computer science (maybe in mathematics?)
- $1,000,000 Clay Mathematics Institute Prize
- Most people believe P is not NP
- If P were equal to NP…
 - Current cryptographic techniques can be broken in polynomial time
 - Computers can probably solve many difficult mathematical problems
NP-hardness

- A problem is **NP-hard** if the following is true:
 - Suppose that it is in P
 - Then P=NP
- So, trying to find a polynomial-time algorithm for it is like trying to prove P=NP
- Set cover is NP-hard
- Typical way to prove problem Q is NP-hard:
 - Take a known NP-hard problem Q’
 - Reduce it to your problem Q
 - (in polynomial time)
- E.g. (M)IP is NP-hard, because we have already reduced set cover to it
 - (M)IP is more general than set cover, so it can’t be easier
- A problem is **NP-complete** if it is 1) in NP, and 2) NP-hard
Reductions:

To show problem Q is easy:

\[Q \xrightarrow{\text{reduce}} \text{Problem known to be easy (e.g. LP)} \]

To show problem Q is (NP-)hard:

\[\text{Problem known to be (NP-)hard (e.g. set cover, (M)IP)} \xrightarrow{\text{reduce}} Q \]

ABSOLUTELY NOT A PROOF OF NP-HARDNESS:

\[Q \xrightarrow{\text{reduce}} \text{MIP} \]
Independent Set

• In the below graph, does there exist a subset of vertices, of size 4, such that there is no edge between members of the subset?

• General problem (decision variant): given a graph and a number k, are there k vertices with no edges between them?

• NP-complete
Reducing independent set to set cover

- In set cover instance (decision variant),
 - let $S = \{1,2,3,4,5,6,7,8,9\}$ (set of edges),
 - for each vertex let there be a subset with the vertex’s adjacent edges: $\{1,4\}$, $\{1,2,5\}$, $\{2,3\}$, $\{4,6,7\}$, $\{3,6,8,9\}$, $\{9\}$, $\{5,7,8\}$
 - target size = #vertices - k = 7 - 4 = 3

- Claim: answer to both instances is the same (why??)
- So which of the two problems is harder?
Weighted bipartite matching

- Match each node on the left with one node on the right (can only use each node once)
- Minimize total cost (weights on the chosen edges)
Weighted bipartite matching...

- minimize $c_{ij} x_{ij}$
- subject to
- for every i, $\Sigma_j x_{ij} = 1$
- for every j, $\Sigma_i x_{ij} = 1$
- for every i, j, $x_{ij} \geq 0$

- Theorem [Birkhoff-von Neumann]: this linear program always has an optimal solution consisting of just integers
 - and typical LP solving algorithms will return such a solution

- So weighted bipartite matching is in P