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The Players
• Choose from a large set of interchangeable terms:

– Processes, threads, tasks,…
– Processors, nodes, servers, clients,…
– Actors, agents, participants, partners, cohorts…

• I prefer to use the term “node” or “actor”
– Short and sweet
– A logical/virtual entity: may be multiple logical 

nodes per physical machine.
– General with regard to role and internal structure
– Tend to use “actor” if self-interest is an issue



Properties of nodes/actors
• Essential properties typically assumed by model:

– Private state
• Distributed memory: model sharing as messages

– Executes a sequence of state transitions
• Some transitions are reactions to messages
• May have internal concurrency, but hide that

– Deterministic vs. nondeterministic
– Unique identity vs. anonymous nodes
– Local clocks with arbitrary drift vs. global time 

strobe (e.g., GPS satellites)



Node faults and failures
• Fail-stop.  Nodes/actors may fail by stopping.
• Byzantine. Nodes/actors may fail without stopping.

– Arbitrary, erratic, unexpected behavior
– May be malicious and disruptive

• Unfaithful behavior
– Actors may behave unfaithfully from self-interest.
– If it is rational, is it Byzantine?
– If it is rational, then it is expected.
– If it is expected, then we can control it.
– Design in incentives for faithful behavior, or 

disincentives for unfaithful behavior.



Node recovery
• Fail-stopped nodes may revive/restart.

– Retain identity
– Lose messages sent to them while failed
– Arbitrary time to restart…or maybe never

• Restarted node may recover state at time of failure.
– Lose state in volatile (primary) memory.
– Restore state in non-volatile (secondary) memory.
– Writes to non-volatile memory are expensive.
– Design problem: recover complete states reliably, 

with minimal write cost.



Messages
• Processes communicate by sending messages.
• Unicast typically assumed

– Build multicast/broadcast on top
• Use unique process identity as destination.
• Optional: cryptography

– (optional) Sender is authenticated.
– (optional) Message integrity is assured.
– E.g., using digital signatures or Message 

Authentication Codes.



Distributed System Models
• Synchronous model

– Message delay is bounded and the bound is known.
– E.g., delivery before next tick of a global clock.
– Simplifies distributed algorithms

• “learn just by watching the clock”
• absence of a message conveys information.

• Asynchronous model
– Message delays are finite, but unbounded/unknown
– More realistic/general than synchronous model.

• “Beware of any model with stronger assumptions.” - Burrows
– Strictly harder/weaker than synchronous model.

• Consensus is not always possible



Messaging properties
• Other possible properties of the messaging model:

– Messages may be lost.
– Messages may be delivered out of order.
– Messages may be duplicated.

• Do we need to consider these in our distributed 
system model?

• Or, can we solve them within the asynchronous model, 
without affecting its foundational properties?
– E.g., reliable transport protocol such as TCP
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The network
• Picture a cloud with open unicast and unbounded 

capacity/bandwidth.
– Squint and call it the Internet.

• Alternatively, the network could be a graph:
– Graph models a particular interconnect structure.
– Examples: star, ring, hypercube, etc.
– Nodes must forward/route messages.
– Issues: cut-through, buffer scheduling, etc.
– Bounded links, blocking send: may deadlock.
– For that take CPS 221 (Parallel Architectures)



Standard assumptions
• For this class, we make reasonable assumptions for 

general Internet systems:
– Nodes with local state and (mostly) local clocks
– Asynchronous model: unbounded delay but no loss
– Fail-stop or Byzantine
– Node identity with (optional) authentication

• Allows message integrity
– No communication-induced deadlock.

• Can deadlock occur?  How to avoid it?
– Temporary network interruptions are possible.

• Including partitions



Coordination
• If the solution to availability and scalability is to decentralize 

and replicate functions and data, how do we coordinate the 
nodes?
– data consistency
– update propagation
– mutual exclusion
– consistent global states
– group membership
– group communication
– event ordering
– distributed consensus
– quorum consensus



Consensus

Unreliable 
multicast

Step 1
Propose.
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Step 2
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d3 d2 

Generalizes to N nodes/processes.



Properties for Correct Consensus

• Termination: All correct processes eventually decide.

• Agreement: All correct processes select the same di.

• Or…(stronger) all processes that do decide 
select the same di, even if they later fail.

• Called uniform consensus: “Uniform consensus is 
harder then consensus.”

• Integrity: All deciding processes select the “right” 
value.
– As specified for the variants of the consensus 

problem.



Properties of Distributed Algorithms

• Agreement is a safety property.
– Every possible state of the system has this 

property in all possible executions.  
– I.e., either they have not agreed yet, or they all 

agreed on the same value.
• Termination is a liveness property.

– Some state of the system has this property in all 
possible executions.  

– The property is stable: once some state of an 
execution has the property, all subsequent states 
also have it.



Variant I: Consensus (C)

Pi selects di from {v0, …, vN-1}.
All Pi select di as the same vk .

If all Pi propose the same v, then di = v, else di is arbitrary.

di = vk

Coulouris and Dollimore



Variant II: Command Consensus (BG)

Pi selects di = vleader proposed by designated leader node Pleader if 
the leader is correct, else the selected value is arbitrary.
As used in the Byzantine generals problem. 

Also called attacking armies.

di = vleader

vleader
leader or

commander

subordinate or
lieutenant

Coulouris and Dollimore



Variant III: Interactive 
Consistency (IC)

Pi selects di = [v0 , …, vN-1] vector reflecting the values 
proposed by all correct participants.

di = [v0 , …, vN-1]

Coulouris and Dollimore



Equivalence of Consensus Variants

• If any of the consensus variants has a solution, then all of them 
have a solution.

• Proof is by reduction.

– IC from BG.  Run BG N times, one with each Pi as leader.

– C from IC.  Run IC, then select from the vector.
– BG from C.

• Step 1: leader proposes to all subordinates.

• Step 2: subordinates run C to agree on the proposed 
value.

– IC from C?  BG from IC?  Etc.



Fischer-Lynch-Patterson (1985)

• No consensus can be guaranteed in an asynchronous 
communication system in the presence of any failures.

• Intuition: a “failed” process may just be slow, and can 
rise from the dead at exactly the wrong time.

• Consensus may occur recognizably, rarely or often.
• e.g., if no inconveniently delayed messages

• FLP implies that no agreement can be guaranteed in 
an asynchronous system with Byzantine failures 
either. (More on that later.)



Consensus in Practice I
• What do these results mean in an asynchronous world?

– Unfortunately, the Internet is asynchronous, even if we 
believe that all faults are eventually repaired.

– Synchronized clocks and predictable execution times 
don’t change this essential fact.

• Even a single faulty process can prevent consensus.

• The FLP impossibility result extends to:
– Reliable ordered multicast communication in groups

– Transaction commit for coordinated atomic updates
– Consistent replication

• These are practical necessities, so what are we to do?



Consensus in Practice II
• We can use some tricks to apply synchronous algorithms:

– Fault masking: assume that failed processes always 
recover, and reintegrate them into the group.

• If you haven’t heard from a process, wait longer…
• A round terminates when every expected message is 

received.
– Failure detectors: construct a failure detector that can 

determine if a process has failed.
• A round terminates when every expected message is 

received, or the failure detector reports that its 
sender has failed.

• But: protocols may block in pathological scenarios, and they 
may misbehave if a failure detector is wrong.



Failure Detectors
• How to detect that a member has failed?

– pings, timeouts, beacons, heartbeats
– recovery notifications

• “I was gone for awhile, but now I’m back.”

• Is the failure detector accurate?
• Is the failure detector live (complete)?

• In an asynchronous system, it is possible for a failure detector 
to be accurate or live, but not both.
– FLP tells us that it is impossible for an asynchronous system 

to agree on anything with accuracy and liveness!



Failure Detectors in Real Systems
• Use a detector that is accurate but not live.

– “I’m back....hey, did anyone hear me?”
– Can’t wait forever...

• Use a detector that is live but not accurate.
– Assume bounded processing delays and delivery times.
– Timeout with multiple retries detects failure accurately 

with high probability.  Tune it to observed latencies.
– If a “failed” site turns out to be alive, then restore it or 

kill it (fencing, fail-silent).
– Example: leases and leased locks

• What do we assume about communication failures?  How 
much pinging is enough?  What about network partitions?



A network partition



Two Generals in practice

Deduct 
$300

Issue 
$300

How do banks solve this problem?

Keith Marzullo



Committing Distributed Transactions

• Transactions may touch data at more than one site.
• Problem: any site may fail or disconnect while a 

commit for transaction T is in progress.
– Atomicity says that T does not “partly commit”, 

i.e., commit at some site and abort at another.
– Individual sites cannot unilaterally choose to abort 

T without the agreement of the other sites.
– If T holds locks at a site S, then S cannot release 

them until it knows if T committed or aborted.
– If T has pending updates to data at a site S, then 

S cannot expose the data until T commits/aborts.



Commit is a Consensus Problem
• If there is more than one site, then the sites must 

agree to commit or abort.
• Sites (Resource Managers or RMs) manage their own 

data, but coordinate commit/abort with other sites.
– “Log locally, commit globally.”

• We need a protocol for distributed commit.
– It must be safe, even if FLP tells us it might not 

terminate.
• Each transaction commit is led by a coordinator 

(Transaction Manager or TM).
27



Commit Protocols
• Two phase commit (2PC)

– Widely taught and used
– Might block forever if coordinator (TM) fails or 

disconnects.
• 3PC: Add another phase

– Reduce the window of vulnerability
• Paxos commit: works whenever it can (nonblocking)

– Lamport/Gray based on Paxos consensus
– If TM fails, another steps forward to take over 

and restart the protocol.
28



2PC

29
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“commit or abort?” “here’s my vote” “commit/abort!”
TM/C

RM/P

precommit
or prepare

vote decide notify

RMs validate Tx and 
prepare by logging 

their local updates and 
decisions

TM logs 
commit/abort 
(commit point)

If unanimous to commit
decide to commit

else decide to abort



2PC: Phase 1
✓ 1. Tx requests commit, by notifying coordinator (C)

• C must know the list of participating sites/RMs.

✓ 2. Coordinator C requests each participant (P) to 
prepare.

✓ 3. Participants (RMs) validate, prepare, and vote.  
• Each P validates the request, logs validates 

updates locally, and responds to C with its vote 
to commit or abort.

• If P votes to commit, Tx is said to be “prepared” 
at P.



2PC: Phase 2
✓ 4. Coordinator (TM) commits.

• Iff all P votes are unanimous to commit
– C writes a commit record to its log

– Tx is committed.

• Else abort.

✓ 5. Coordinator notifies participants.
• C asynchronously notifies each P of the outcome for Tx.

• Each P logs the outcome locally

• Each P releases any resources held for Tx.

31



Handling Failures in 2PC
• How to ensure consensus if a site fails during the 2PC 

protocol?
• 1. A participant P fails before preparing.

• Either P recovers and votes to abort, or C times 
out and aborts.

• 2. Each P votes to commit, but C fails before committing.

• Participants wait until C recovers and notifies 
them of the decision to abort.  The outcome is 
uncertain until C recovers.



Handling Failures in 2PC, 
continued

• 3. P or C fails during phase 2, after the outcome 
is determined.

• Carry out the decision by reinitiating the protocol 
on recovery.

• Again, if C fails, the outcome is uncertain until C 
recovers.
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Notes on 2PC
• Any RM (participant) can enter the prepared state at any 

time.  “The TM’s prepare message can be viewed as an 
optional suggestion that now would be a good time to do so.  
Other events, including real-time deadlines, might cause 
working RMs to prepare.  This observation is the basis for 
variants of the 2PC protocol that use fewer messages.”  
Lamport and Gray.

• 3N-1 messages, some of which may be local.
• Non-blocking commit: “failure of a single process does not 

prevent other processes from deciding if the transaction 
is committed or aborted.

–   E.g., 3PC. 34



3PC

35



General Asynchronous 
Consensus: Paxos 
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Paxos? Simple?  Really?
• The original Lamport paper “Part-Time Parliament”?

– These ancient rituals are opaque to most of us.
• Lampson: “How to Build a...System Using Consensus”?

– Wonderfully clear and elegant...
– But not simple: Lampson has too much to teach us.

• The Lamport reprise “Paxos Made Simple”?
– Not clear: too many false leads, paths not taken.

• “Paxos Made Live”: clear, insightful, but too simple.
– “Read the following papers for the details.”

37



Paxos Really Made Simple
• Today: “Paxos Really Made Simple”.

– Or at least I try...

38



Paxos: Properties
• Paxos is an asynchronous consensus algorithm.
• FLP result says no asynchronous consensus algorithm 

can guarantee both safety and liveness.
• Paxos is guaranteed safe.

– Consensus is a stable property: once reached it is 
never violated; the agreed value is not changed. 

• Paxos is not guaranteed live.
– Consensus is reached if “a large enough 

subnetwork...is nonfaulty for a long enough time.”
– Otherwise Paxos might never terminate.

39



Paxos: the Players
• N acceptors/agents

– Majority required for consensus.
– Paxos can tolerate a minority of acceptors failing.

• Leader/proposer/coordinator
– Presents a consensus value to the acceptors and counts 

the ballots for acceptance of the majority.
– Notifies the agents of success.

• Note: any node/replica may serve either/both roles.

40

“v?” “OK” “v!”
L

N



Paxos: Leader Election
• In general, leader election is a consensus problem!

– No fair for a consensus algorithm to depend on it.
• Paxos is safe with multiple leaders.

– In essence leader election is “built in”: no need to 
agree in advance who the “real” leader is.

– Robust: if consensus (appears) stalled, anyone can 
(try to) take over as self-appointed leader.

• But: too many would-be leaders can cause livelock.

41



Leaders and Liveness
• In Paxos any new leader usurps previous leaders.

– New leader can intrude before protocol completes.
• How aggressively should nodes claim leadership?

– Too aggressive?
• Costly, and protocol might fail to terminate. 

– Not aggressive enough?
• Protocol stalls. 

• Solution: use Paxos sparingly and with suitable leader 
timeouts [Lampson].
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Paxos in Practice
• Lampson: “Since general consensus is expensive, 

practical systems reserve it for emergencies.”
– e.g., to select a primary such as a lock server.

• Frangipani
• Google Chubby service (“Paxos Made Live”)

• Pick a primary with Paxos.  Do it rarely; do it right.
– Primary holds a “master lease” with a timeout.

• Renewable by consensus with primary as leader.
– Primary is king as long as it holds the lease.
– Master lease expires?  Fall back to Paxos. 43



Rounds and Ballots
• The Paxos protocol proceeds in rounds.

– Each round has a uniquely numbered ballot.
• If no failures, then consensus is reached in one round.
• Any would-be leader can start a new round on any 

(apparent) failure.
• Consensus is reached when some leader successfully 

completes a round.
• It might take even more rounds for the acceptors 

(agents) to learn that consensus was reached.

44



Phase 1: Proposing a Round
• Would-be leader chooses a unique ballot ID.
• Propose to the acceptors/agents (1a).

– Will you consider this ballot with me as leader?
• Agents return the highest ballot ID seen so far (1b).

– Seen one higher than yours?  That’s a rejection.
• If a majority respond and know of no higher ballot number, 

then you are their leader (for this round).  

45

“Can I lead b?” “OK” “v!”
L
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1a 1b

“v?” “OK”

2a 2b 3



Phase 2-3: Leading a Round
• Congratulations!  You were accepted to lead a round.

– Choose a “suitable value” for this ballot.
– Command the agents to accept the value (2a).
– If a majority hear and obey, the round succeeds.

• Did a majority respond (2b) and assent?
– Yes: tell everyone the round succeeded (3).
– No: move on, e.g., ask for another round.

46

“Can I lead b?” “OK” “v!”
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1a 1b

“v?” “OK”

2a 2b 3



The Agents
• Proposal for a new ballot (1a) by a would-be leader?

– If this ballot ID is higher than any you have seen 
so far, then accept it as the current ballot.
• Log ballot ID in persistent memory.

– Respond with highest previous ballot ID “etc.” (1b)
• Commanded (2a) to accept a value for current ballot?

– Accept value and log it in persistent memory.
– Discard any previously accepted value.
– Respond (2b) with accept, or deny (if ballot is old).

47



Leader: Choosing a Suitable Value
• A majority of agents responded (1b): good.  Did any accept 

a value for some previous ballot (in a 2b message)?
– Yes: they tell you the ballot ID and value.

• That was the “etc.” in 1b.
• Find the most recent value that any responding 

agent accepted, and choose it for this ballot too.
– No: choose any value you want.

48

“Can I lead 
round 5?”

“OK, but I accepted 
7 for round 4” “7!”

L

N

1a 1b

“7?” “OK”

2a 2b 3



A Paxos Round

49

“Can I 
lead b?” “OK, but” “v!”

L

N

1a 1b

“v?” “OK”

2a 2b 3

Propose Promise Accept Ack Commit

Where is the consensus “point of no return”?

Wait for majority Wait for majority

log log safe

Self-appoint



Success and Failure
• A round succeeds if a majority of agents hear the 

command (2a) and obey.
• A round fails if too many agents fail, too many 

command messages are lost, or another leader usurps.
– But some agents may survive and hear the 

command, and obey it even though the round failed.
• Liveness requires that agents are free to accept 

different values in subsequent rounds.
• But: safety requires that once some round succeeds, 

no subsequent round can change it.
50



What Happens After Success?
• The leader may not know that the round succeeded.

– Leader may fail.  Agent responses (2b) may be lost.
• The agents may not know that the round succeeded.

– They won’t know until the leader knows and tells 
them (3), which might not happen (e.g., see above).

– Even if the leader knows, it may fail or go quiet.
• Even so, it succeeded: consensus has been reached!

– We can never go back.
• Solution: have another round, possibly with a 

different leader, until you learn of your success.
51



Safety: Outline
• Key invariant: If some round succeeds, then any 

subsequent round chooses the same value, or it fails.
• To see why, consider the leader L of a round R.

– If a previous round S succeeded with value v, then 
either L learns of (S, v), or else R fails.
• Why?  S got responses from a majority: if R 

does too, then some agent responds to both.
– If L does learn of (S,v), then by the rules of Paxos 

L chooses v as a “suitable value” for R.
– (Unless there was an intervening successful round.)

52



More on Safety
• All agents that accept a value for some round S accept 

the same value v for S.
– They can only accept the one value proposed by the 

single leader for that unique round S.
• And if an agent accepts a value (after 2a), it reports 

that value to the leader of a successor round (in 1b).
• Therefore, if R is the next round to succeed, then the 

leader of a R learns of (S,v), and picks v for R.
– Success requires a majority, and majority sets are 

guaranteed to intersect.
– Induction to all future successful rounds.
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Consensus

54

Jenkins, if I want another yes-man, I’ll build one!

[Cribbed from a presentation by Ken Birman.]



A Paxos Round
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“Can I 
lead b?” “OK, but” “v!”

L
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1a 1b
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2a 2b 3

Propose Promise Accept! Ack Commit
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Some Failure Cases
• Agent fails.

– Go on without it, and/or it restarts with its hard state: 
(last ballot ID, last accepted value).

• Leader fails.
– Abandon the round and follow a new leader.  If the 

round succeeded, we’ll find out and stick to it.
• Leaders race.

– Eventually some 1b-approved leader will push 2a to a 
majority of agents before being usurped by a new 
leader’s 1a.   Eventually?

• Messages dropped.
– If things get ugly, have another round. 56



Dynamic Uniformity in Paxos
• Dynamic uniformity: if any node X accepts v as the 

consensus value, then every operational node Y also 
accepts v....eventually....even if X crashes.

• Suppose some subset of nodes accept v by Paxos in 
round S, and then all crash or disconnect.

• The S nodes made up a majority, so no subsequent 
round R can succeed until at least one recovers.
– Might never recover: Paxos is not guaranteed live.

• But if enough recover for a subsequent round R to 
succeed, then R will have the same value v!
– Agents log (S, v) at 2a and report it for 1b. 57



Paxos vs. 2PC
• The fundamental difference is that leader failure can 

block 2PC, while Paxos is non-blocking.
– Someone else can take over as leader.

• Both use logging for continuity across failures.
• But there are differences in problem setting...

– 2PC: agents have “multiple choice with veto power”.
• Unanimity is required, at least to commit.

– Paxos: consensus value is dictated by the first 
leader to control a majority.

• Can we derive a nonblocking commit from Paxos?
58



From 2PC to Paxos Commit
• One way: if coordinator (TM) fails, each RM leads a 

Paxos instance so the others learn its vote.
– Gray and Lamport, “Paxos Commit Algorithm”.

• “2PC is a degenerate case of the Paxos Commit 
algorithm with a single coordinator, guaranteeing 
progress only if the coordinator is working.”

• Or: add multiple-choice voting to Paxos?  
– Left as an exercise.
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Ken Birman on Paxos
• “Dynamic uniformity is very costly...there are major 

systems (notably Paxos, the group management protocol 
favored in some recent Microsoft products and platforms) 
in which an ABCAST primitive with dynamic uniformity is 
the default.  Such a primitive is very slow and expensive 
but can be used safely for almost any purpose.  On the 
other hand, the cost is potentially so high that the 
resulting applications may be unacceptably sluggish 
compared to versions coded to use one of the cheaper 
primitives, particularly a non-uniform ABCAST 
implemented using token passing and FBCAST.”
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Paxos vs. ABCAST
• ABCAST: agree on the next message in a stream of 

messages to a group with multiple senders.
– How to establish a total order on the messages?
– Run a Paxos instance for each next message?

• Dynamic uniformity: if any node X accepts message m 
as next, then every operational node Y also accepts m 
as next....eventually...even if X crashes.
– “Safe”: X can take externally visible actions based 

on m before X knows that Y knows m is next.
– E.g., put cash out the ATM on transaction commit. 
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Keith Marzullo on Paxos
• Keith Marzullo et. al. support the equivalence of Paxos 

consensus and dynamically uniform ABCAST.
• On why would we use consensus (e.g., Paxos):

– “One of the most important applications of consensus is 
state-machine replication, where clients propose 
commands and servers run a sequence of consensus 
instances.  Each instance then selects a single command 
for the replicated service to execute.”

– In other words, we need a total order on the 
commands, i.e., ABCAST delivery of the commands.
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Is Paxos “Unacceptably Sluggish”?

• Paxos is slow...if multiple nodes fight for leadership 
(e.g., ABCAST with multiple senders).

• But: consider one Paxos instance with no conflict 
among leaders, and no failure:
– takes 2.5 message rounds for full protocol
– two disk writes (per agent) in the latency path
– not SO bad

• But keep trying if there’s a failure or conflict.
– “Get it done as fast as you can, but take as long as 

it takes to get it done.”
63



Paxos: Summary
• Non-blocking asynchronous consensus protocol.

– Safe, and live if not “too many” failures/conflicts.
• Paxos is at the heart of many distributed and 

networked systems.
– Often used as a basis for electing the primary in 

primary-based systems (i.e., “token passing”).
• Related to 2PC, but robust to leader failure if some 

leader lasts long enough to complete the protocol.
– The cost of this robustness is related to the rate 

of failures and competition among leaders.
64



Byzantine Consensus

65



Byzantine Fault Tolerance
• What happens to 2PC or Paxos if the participants lie 

or act inconsistently?
– Failure model: fail-stop or disconnect.
– What about “Byzantine” failures?  e.g., compromise 

or subversion by an attacker.
• “Byzantine fault tolerance” (BFT): a hot topic

– Replicate functions, compare notes, and vote.
– Consistent/correct outcome even if some fail.
– Note: assumes independent failures.

• vulnerable to “groupthink”
66



Lamport’s 1982 Result, 
Generalized by Pease

• The Lamport/Pease result shows that consensus is 
impossible:
– with byzantine failures,
– if one-third or more processes fail (N ≤ 3F),

• Lamport shows it for 3 processes, but Pease 
generalizes to N.

– even with synchronous communication.
• Intuition: a node presented with inconsistent 

information cannot determine which process is faulty.
• The good news: consensus can be reached if N > 3F, 

no matter what kinds of node failures occur.



Impossibility with three 
byzantine generals

p1 (Commander)

p2 p3

1:v1:v

2:1:v

3:1:u

p1 (Commander)

p2 p3

1:x1:w

2:1:w

3:1:x

Faulty processes are shown shaded

[Lamport82]
Intuition: subordinates cannot distinguish these cases.
Each must select the commander’s value in the first case, 
but this means they cannot agree in the second case.

“3:1:u” means
 “3 says 1 says u”.



Solution with four byzantine 
generals

p1 (Commander)

p2 p3

1:v1:v

2:1:v
3:1:u

Faulty processes are shown shaded
p4

1:v

4:1:v

2:1:v 3:1:w

4:1:v

p1 (Commander)

p2 p3

1:w1:u

2:1:u
3:1:w

p4

1:v

4:1:v

2:1:u 3:1:w

4:1:v

Intuition: vote.



Summary: Byzantine Consensus
• A solution exists if less than one-third are faulty (N > 3F).

• But FLP applies: it works only if communication is synchronous.
• Like fail-stop consensus, the algorithm requires F+1 rounds.

• The algorithm is very expensive and therefore impractical.

• Number of messages is exponential in the number of 
rounds.

• Signed messages make the problem easier (authenticated 
byzantine).

– In general case, the failure bounds (N > 3F) are not affected.
– Practical algorithms exist for N > 3F. [Castro&Liskov]



Practical BFT
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• Castro/Liskov is a widely cited paper with lots of 
follow-on work.  Practical BFT consensus using 
Message Authentication Codes and voting.

ABCAST



 Practical BFT: Overview
• Nodes share a sequence of views of group membership, 

with a designated leader/primary.
– If the primary appears to fail, start a new view (like 

Paxos, and Viewstamped Replication [Liskov]).
• Clients send requests to primary.

– Primary sequences all requests for state machine 
replication model.

• i.e., in essence, dynamically uniform ABCAST using a 
Paxos-elected primary as a sequencer.

• Secondaries vote on whether to commit, then send their 
view on the outcome of the vote to the client.
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BFT Protocol Summary
• Primary multicasts “prepare” message for next request.
• Replicas multicast their acceptance to all replica.
• When a replica sees enough prepare-accepts, it commits 

locally and multicasts its commit vote to all replicas.
• When a replica sees enough commit votes, it considers the 

request to have committed.
• Each replica sends its view of the outcome back to the 

client.
• Client compares the outcomes.
• Lots of grunge around view changes.
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Weak Synchrony
• Castro and Liskov: Consensus protocols can be "live if 

delay(t) does not grow faster than (t) indefinitely".  
This is a "weak synchrony assumption" that is "likely 
to be true in any real system provided that network 
faults are eventually repaired, yet it enables us to 
circumvent the impossibility result" in FLP.
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Aside: View Changes
• How to propagate knowledge of failure and recovery events to 

other nodes?

– Surviving nodes should agree on the new view (regrouping).
– Convergence should be rapid.

– The regrouping protocol should itself be tolerant of message 
drops, message reorderings, and failures.

• and ordered with respect to message delivery
– The regrouping protocol should be scalable.

– The protocol should handle network partitions.
• This is another instance of a consensus problem.

• Explored in depth for process group and group membership 
systems (e.g., virtual synchrony).



Final Thoughts: CAP
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C

A P

Fox&Brewer “CAP Theorem”:
C-A-P: choose two.

consistency

Availability Partition-resilience

Claim: every distributed 
system is on one side of 
the triangle.

CA: available, and consistent, 
unless there is a partition.

AP: a reachable replica provides 
service even in a partition, but 
may be inconsistent.

CP: always consistent, even in a 
partition, but a reachable replica may 
deny service without agreement of 
the others (e.g., quorum).



CAP Examples
• CP: Paxos, or any consensus algorithm, or state machine 

replication with a quorum required for service.
– Always consistent, even in a partition.  But might not 

be available, even without a partition.
• AP: Bayou

– Always available if any replica is up and reachable, 
even in a partition.  But might not be consistent, even 
without a partition.

• CA: consistent replication (e.g., state machine with 
CATOCS) with service from any replica.
– What happens in a partition? 78



CAP: CA
• A CA system is consistent and available, but may become 

inconsistent in a partition.

– Basic state machine replication with service from any replica.
– Coda read-one-write-all-available replication.

• These are always consistent in the absence of a partition.

– But they could provide service at two or more isolated/
conflicting replicas in a partition (“split brain”).

• To preserve consistency in a partition requires some mechanism 
like quorum voting to avoid a “split brain”.

– That makes the system a CP: it must deny service when it 
does not have a quorum, even if there is no partition.
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