Basic Probability Review

CPS 271 Ron Parr

Probability: Who needs it?

- · Learning without probabilities is possible
 - Version spaces
 - Explanation based learning
- · Learning almost always involves
 - Noise in data
 - Prediction about the future
- Learning systems that don't use probability in some way tend to be very, very brittle

Probabilities

- · Natural way to represent uncertainty
- · People have intuitive notions about probabilities
- · Many of these are wrong or inconsistent
- · Most people don't get what probabilities mean
- · Finer details of this question still debated

Relative Frequencies

- · Probabilities defined over events
- Space of all possible events is "event space"

Event space:

• Think: Playing blindfolded darts with the Venn diagram..

Understanding Probabilities

- Probabilities have dual meanings
 - Relative frequencies (frequentist view)
 - Degree of belief (Bayesian view)
- · Neither is entirely satisfying
 - No two events are truly the same (reference class problem)
 - Statements should be grounded in reality in some way

Why probabilities are good (despite the difficulties)

- · Subjectivists: probabilities are degrees of belief
- Are all degrees of belief probability?
 - Al has used many notions of belief:
 - Certainty Factors
 - Fuzzy Logic
- Can prove that a person who holds a system of beliefs inconsistent with probability theory can be tricked into accepted a sequence of bets that is guaranteed to lose

Probabilities over discrete events

(and the horror of common notation)

- · Probabilities defined over sets of random variables
- · RVs usually represented with capitals: X,Y,Z
- · Use lower case letters for values from domains
- X=x asserts that the random variable X has taken on value x
- P(x) is shorthand for P(X=x)

Event spaces for discrete RVs

• 2 variable case

- Important: Event space grows exponentially in number of random variables
- Components of event space = atomic events

Joint Distributions

- A joint distribution is an assignment of probabilities to every possible atomic event
- We can define all other probabilities in terms of the joint probabilities:

$$P(a) = \sum_{e_i \in e(a)} P(e_i)$$

$$P(a) = P(a \land b) + P(a \land \neg b)$$

· AKA: Sum rule, marginalization

Why Probabilities Are Messy

- · Probabilities are not truth-functional
- To compute P(a and b), need joint distribution
 - sum out all of the other events from distribution
 - In general, it is not a function of P(a) and P(b)
 - In general, it is not a function of P(a) and P(b)
 - In general, it is not a function of P(a) and P(b)
 - This fact led to many approximations methods such as certainty factors and fuzzy logic (Why?)

Independence

- RVs A and B are independent iff:
 - -P(AB)=P(A)P(B)
- · Independence:
 - Make things computationally easy
 - Makes things boring
 - From an algorithmic standpoint
 - From a predictive standpoint
 - Is almost never true
 - Is approximately true for "unrelated" events

Kolmogorov's axioms of probability

- 0 <= P(a) <= 1
- P(true) = 1; P(false)=0
- P(a or b) = P(a) + P(b) P(a and b)
 - Subtract to correct for double counting
- This is sufficient to specify probability theory for discrete variables
- · Continuous variables need density functions

Continuous Random Variables

- · Domain is some interval, region, or union of regions
- Uniform case: Simplest to visualize (event probability is proportional to area)
- Non-uniform case visualized with extra dimension

Gaussian (normal/bell) distribution:

Updating Kolmogrov's Axioms

- Use lower case for probability density
- Use end of the alphabet for continuous vars
- For discrete events: 0 ≤ P(a) ≤ 1
- For densities: $0 \le p(x)$
- Is p(x)>1 possible???

Requirements on Continuous Distributions

• p(x)>1 is possible so long as:

$$\int p(x)dx = 1$$

- Don't confuse p(x) and P(X=x)
- P(X=x) for any x is 0!

$$P(x \in A) = \int p(x)dx$$

Cumulative Distributions

- When distribution is over numbers, we can ask:
 - P(X>=c) for some c
 - P(X<c) for some c
 - P(a<=X<=b) for some, a and b
- · Solve by
 - Summation
 - Integration
- · Cumulative sometimes called
 - CDF
 - Distribution function

Sloppy Comment about Continuous Distributions

- In many, many cases, you can generalize what you know about discrete distributions to continuous distributions by replace "p" with "P" and "Σ" with "∫"
- Proper treatment of this topic requires measure theory and is beyond the scope of the text and class

Conditional Probabilities

- Ordinary probabilities = unconditional or prior probabilities
- P(a|b) = probability of a given that we know only b
- If we know c and d, we can't use P(a|b) directly (annoying, but important detail!)
- P(a|a)=1

Conditional Probability

• P(b|a) = Probability of event b given that event a is true

• Idea: In what fraction of a event space is b also true?

$$P(B|A) = P(AB)/P(A)$$

Definition of Conditional Probability

- Following geometric intuitions from previous slide
 - -P(B|A) = P(AB)/P(A)
 - -P(A|B) = P(AB)/P(B)
- · Also known as the product rule:
 - -P(B|A)P(A) = P(AB)=P(BA)
 - -P(A|B)P(B) = P(AB)=P(BA)

Condition with Bayes's Rule

$$P(A \land B) = P(B \land A)$$

$$P(A \mid B)P(B) = P(B \mid A)P(A)$$

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Why Bayes's Rule is Cool

- · Solves the "inverse probability" problem
- · Diagnosis:
 - Often we know: P(Symptoms|Disease) from data
 - Want: P(D|S) to diagnose patients
- · Sensing:
 - Know: P(Observation|Reality)
 - Want: P(R|O)
- · Learning:
 - Know: P(Data|Hypothesis about source model)
 - Want: P(H|D)

Expectation

$$E(X) = \sum_{X} XP(X)$$

- · Matches some colloquial notions of average
- "Mean"
- · Arithmetic mean (uniform weights)
- · For continuous random variables:

$$E(X) = \int_{Y} Xp(X)dX$$

Nota bene: We will be assuming that $\mathsf{E}(\mathsf{X})$ is finite.

Properties of Expectation

$$E(f(X)) = \sum_{X} f(X)P(X)$$

E(aX) = ??? aE(X)

E(aX + b) = ??? aE(X) + bE(X + Y) = ??? E(X) + E(Y)

E(XY) = ??? If X,Y are independent: E(X)E(Y)

Variance

- · Hard to define in words
- "How much we trust the mean"

$$Var(X) = E[(X - E(X))^{2}]$$

= $E(X^{2}) - E(X)^{2}$

Nota bene: We will typically assume that Var(X) is finite.

Properties of Variance

$$Var(X) = E[(X - E(X))^2]$$

$$Var(aX) = ???$$
 $a^2Var(X)$

$$Var(aX + b) = ???$$
 $a^2Var(X)$

$$Var(X+Y) = ???$$

$$Var(X)+Var(Y)+2E[(X-E(X))(Y-E(Y))]$$

If X,Y are independent: Var(X) + Var(Y)

Covariance

Var(X + Y) = Var(X) + Var(Y) + 2E[(X - E(X))(Y - E(Y))]

• Covariance captures the leftover:

$$Cov(X,Y) = Cov(Y,X) = E[(X - E(X))(Y - E(Y))]$$

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

If X,Y are independent, Cov(X,Y)=???

Standard Deviation

$$SD(X) = \sqrt{Var(X)}$$

- Even harder to define in English
- Sometimes more natural than variance:

$$SD(aX) = aSD(X)$$

• Often not, for X,Y independent:

$$SD(X+Y) = \sqrt{SD^2(X) + SD^2(Y)}$$

Sample Mean

- Suppose we observe $X_1 ... X_n$
- Assume these are independently drawn, and indentically distributed (IID)
- What is our estimate for E(X)?

$$\overline{X} = \frac{\sum_{i=1}^{n} X_{i}}{X_{i}}$$

• Why?
$$E(\overline{X}) = E\left(\frac{\sum\limits_{i=1}^{n} X_i}{n}\right) = \frac{nE(X)}{n} = E(X)$$
 Also.