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Probability: Who needs it?

+ Learning without probabilities is possible
— Version spaces
— Explanation based learning

+ Learning almost always involves
— Noise in data
— Prediction about the future

+ Learning systems that don’t use probability in some

way tend to be very, very brittle

Probabilities

Natural way to represent uncertainty

People have intuitive notions about probabilities
Many of these are wrong or inconsistent

Most people don’t get what probabilities mean

Finer details of this question still debated

Relative Frequencies

» Probabilities defined over events
» Space of all possible events is “event space”

Event space: ‘

Not A

» Think: Playing blindfolded darts with the
Venn diagram..

Understanding Probabilities

+ Probabilities have dual meanings
— Relative frequencies (frequentist view)
— Degree of belief (Bayesian view)

* Neither is entirely satisfying

— No two events are truly the same
(reference class problem)

— Statements should be grounded in reality in some way

Why probabilities are good
(despite the difficulties)

+ Subjectivists: probabilities are degrees of belief

Are all degrees of belief probability?
— Al has used many notions of belief:

« Certainty Factors

« Fuzzy Logic

« Can prove that a person who holds a system of beliefs

inconsistent with probability theory can be tricked into
accepted a sequence of bets that is guaranteed to lose




Probabilities over discrete events
(and the horror of common notation)

Probabilities defined over sets of random variables

RVs usually represented with capitals: X,Y,Z

Use lower case letters for values from domains

X=x asserts that the random variable X has taken on value x

P(x) is shorthand for P(X=x)

Event spaces for discrete RVs

» 2 variable case

ab ab
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* Important: Event space grows exponentially
in number of random variables

» Components of event space = atomic events

Joint Distributions

+ A joint distribution is an assignment of
probabilities to every possible atomic event

» We can define all other probabilities in terms
of the joint probabilities:

P(a)= ) P(e)

ece(a)

P(a)=P(anb)+ P(an—b)

* AKA: Sum rule, marginalization

Why Probabilities Are Messy

« Probabilities are not truth-functional

» To compute P(a and b), need joint distribution
— sum out all of the other events from distribution
— In general, it is not a function of P(a) and P(b)
— In general, it is not a function of P(a) and P(b)
— In general, it is not a function of P(a) and P(b)

— This fact led to many approximations methods such as
certainty factors and fuzzy logic (Why?)

Independence

* RVs A and B are independent iff:
— P(AB)=P(A)P(B)
+ Independence:
— Make things computationally easy
— Makes things boring
« From an algorithmic standpoint
» From a predictive standpoint
—Is almost never true
— Is approximately true for “unrelated” events

Kolmogorov’s axioms of probability

* 0<=P(a)<=1

» P(true) = 1; P(false)=0

* P(aorb)=P(a) + P(b)— P(aand b)
— Subtract to correct for double counting

 This is sufficient to specify probability theory
for discrete variables

 Continuous variables need density functions




Continuous Random Variables

« Domain is some interval, region, or union of regions
+ Uniform case: Simplest to visualize
(event probability is proportional to area)

« Non-uniform case visualized with extra dimension

Gaussian
(normal/bell)
distribution:

Updating Kolmogrov’s Axioms

Use lower case for probability density

Use end of the alphabet for continuous vars
For discrete events: 0 < P(a) < 1

For densities: 0 < p(x)

Is p(x)>1 possible???

Requirements on Continuous Distributions

* p(x)>1 /s possible so long as:
Ip(x)dx =1

» Don’t confuse p(x) and P(X=x)
* P(X=x) for any x is 0!

P(xe A) = I p(x)dx

Cumulative Distributions

* When distribution is over numbers, we can ask:
— P(X>=c) for some ¢
— P(X<c) for some ¢
— P(a<=X<=b) for some, a and b
» Solve by
— Summation
— Integration
* Cumulative sometimes called
- CDF
— Distribution function

Sloppy Comment about
Continuous Distributions

+ In many, many cases, you can generalize
what you know about discrete distributions to
continuous distributions by replace “p” with
“P” and “x” with *[”

+ Proper treatment of this topic requires
measure theory and is beyond the scope of
the text and class

Conditional Probabilities

+ Ordinary probabilities = unconditional or prior probabilities
» P(alb) = probability of a given that we know only b

+ If we know ¢ and d, we can’t use P(a|b) directly

(annoying, but important detail!)

+ P(ala)=1




Conditional Probability

* P(bJa) = Probability of event b given that event a is true

ab ab

Q|
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ab

« lIdea: In what fraction of a event space is b also true?

P(BIA) = P(AB)/P(A)

Definition of Conditional Probability

+ Following geometric intuitions from
previous slide

- P(BJA) = P(AB)/P(A)
- P(A|B) = P(AB)/P(B)
* Also known as the product rule:
- P(BJA)P(A) = P(AB)=P(BA)
- P(A|B)P(B) = P(AB)=P(BA)

Condition with Bayes’s Rule

P(AAB)=P(BAA)
P(AIB)P(B)= P(B|A)P(A)

Why Bayes’s Rule is Cool

« Solves the “inverse probability” problem

+ Diagnosis:
— Often we know: P(Symptoms|Disease) from data
— Want: P(D|S) to diagnose patients

+ Sensing:
— Know: P(Observation|Reality)
— Want: P(R|O)

* Learning:
— Know: P(Data|Hypothesis about source model)
— Want: P(H|D)

P(AIB)= P(B1 A)P(A)
P(B)
Expectation

E(X)=) XP(X)

Matches some colloquial notions of average
“Mean”

Arithmetic mean (uniform weights)
For continuous random variables:

E(X)= IXp(X)dX

Nota bene: We will be assuming that E(X) is finite.

Properties of Expectation

E(f(X) =) f(X)P(X)

E(aX)=77 aE(X)

E(@X +b)=77? aE(X)+b

E(X+Y)=777 EMX)+EX)

E(XY)=177? If X,Y are independent: E(X)E®Y)




Variance

* Hard to define in words
* “How much we trust the mean”

Var(X) = E[(X — E(X))*]
=E(X*)-E(X)*

Nota bene: We will typically assume that Var(X) is finite.

Properties of Variance

Var(X) = E[(X — E(X))*]

Var(aX)=177? a*Var(X)
Var(aX +b) =777 a*Var(X)
Var(X +Y)=1777
Var(X)+Var(Y)+2E[(X —E(X))Y —EY))]

If X,Y are independent: Var(X)+Var(Y)

Covariance

Var(X +Y)=Var(X)+Var(Y)+2E[(X - E(X))Y —-E(Y))]
» Covariance captures the leftover:
Cov(X,Y)=Cov(Y,X)=E[(X - E(X))(Y —E(Y))]

Var(X +Y)=Var(X)+Var(Y)+2Cov(X,Y)

* If X\Y are independent, Cov(X,Y)=??? 0

Standard Deviation

SD(X) =+ Var(X)

» Even harder to define in English

» Sometimes more natural than variance:
SD(aX)= aSD(X)

+ Often not, for X,Y independent:

SD(X +Y)=+/SD*(X)+SD*(Y)

Sample Mean

* Suppose we observe X;...X,

« Assume these are independently drawn, and
indentically distributed (IID)

* What is our estimate for E(X)?




