Beyond PCA Continuous Latent Variables

Ron Parr CPS 271

PCA Overview

- PCA finds a linear subspace with the lowest reconstruction error
- Equivalently: PCA finds the linear subspace in which the data have the highest variance
- Used for: De-noising, feature extraction, compression, classification, etc.
- Limitations: Does not respect class labels, requires data aligned as vectors, may not return meaningful principle components, doesn't handle missing data

Probabilistic PCA

- Suppose data are N dimensions, and we want to find d principle components
- Assume data are generated from an underlying (*latent*) ddimensional vector z, which has 0 mean, Gaussian distribution
- We observe view x=Wz + u + e
 - W is an nxd matrix that expands z into N space
 - u is a N-vector offset (mean in N space)
 - e is 0 mean N-dimensional Gaussian noise
- Compare with PCA assumptions:
 - $-\,$ Both methods assume data come from d dimensional space
 - Both can be viewed as assuming extension in N-dimensional space occurs view linear transformation + Noise

Solving Probabilistic PCA

- The ML solution to probabilistic PCA is equivalent to the regular PCA solution (similar them to probabilistic regression)
- So, why bother?
 - Output of P-PCA is a distribution
 - We can draw samples from this distribution
 - We can estimate probabilities of new data points
 - We can handle missing data more gracefully
 - We can also do the Bayesian thing

Kernel PCA

- Keeping with current fashion, people have produced kernelized versions of PCA
- Not as clean and easy as kernelized SVMs (requires more computation and approximations)
- Think before you try this: Why do you want to expand your data into a higher dimensional space, and then find a lower dimensional linear subspace within the higher dimensional space?

 (There are reasons to do this, but they're less obvious than for SVMs.)

Independent Component Analysis (ICA)

- PCA is not particularly helpful for finding independent clusters
- ICA idea:
 - Assume non-Gaussian data
 - Find multiple sets of components
 - Minimize correlation between components
- Blind source separation example:
 - Given: Audio recording with w/2 overlapping voices
 - Goal: Separate voices into separate tracks

Other Dimensionality Reduction Methods

- PCA minimizes L2 reconstruction error
- Multidimensional scaling (MDS) tries to preserve pairwise distances in the projected space
- Isometric feature mapping (ISOMAP) tries to do MDS with geodesic distances
- Locally linear embedding (LLE) tries to preserve local relationships over a set of points in the "neighborhood" of each other

Summary

- "Continuous Latent Variable" techniques assume that high dimensional data are well summarized by lower dimensional representations
- Main differences between techniques
 - Modeling assumptions
 - Optimization criterion