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Choosing Predictors

CPS 271

Ron Parr

Regression figures provided by Christopher Bishop and © 2007 Christopher Bishop

What Makes a Good Prediction?

• Obviously:  One that gives best performance in the 

future, but how do we pick this in advance?

• Best match to training set?

• Best match to training set (with regularization)?

• Distribution over hypotheses?

• Convergence to “truth” in the limit of infinite data?

• Data themselves + some interpolation rule?

Loss Functions

• Predict y, measure performance against target t

• One performance criterion is the squared loss:

• Suppose we predict the mean, loss is then:
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Also…
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Sample Variance

• Generalization of sample mean:

• Sample variance is biased:
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Fitting Continuous Data

(Regression)

• Datum i has feature vector:  φφφφ=(φ1(x(i))…φk(x
(i)))

• Has real valued target: t(i)

• Concept space:  linear combinations of features: 

• Learning objective:  Search to find “best” w

• (This is standard “data fitting” that most people 
learn in some form or another.)
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Regression Examples

• Predicting housing price from:

– House size, lot size, rooms, neighborhood*, etc.

• Predicting weight from:

– Sex, height, ethnicity, etc.

• Predicting life expectancy increase from:

– Medication, disease state, etc.

• Predicting crop yield from:

– Precipitation, fertilizer, temperature, etc.

• Fitting polynomials

– Features are monomials

What Regression Does

• Regression

– Minimizes squared error on training set

– Projects training set into linear subspace spanned 

by the features

• We will prove some of these properties later 

in the class
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What is the Best Choice of Polynomial?

Noisy Source Data

Degree 0 Fit

Degree 1 Fit Degree 3 Fit

Degree 9 Fit Observations

• Degree 3 is the best match to the source

• Degree 9 is the best match to the samples

• We call this over-fitting

• Performance on test data:



9/11/2007

4

What went wrong?

• Is the problem a bad choice of polynomial?

• Is the problem that we don’t have enough data?

• Answer:  Yes 

Regularization

• Idea:  Penalize overly complicated answers

• Regular regression minimizes:

• Regularized regression minimizes:

• Note: May exclude constants form the norm

∑
=

−
M

i

i

i
txy

1

2)(
));(( w

∑
=

−+
M

i

i

i
txyf

1

2)(
));(()( wwλ

Regularization:  Why?

• For polynomials, extreme curves typically 
require extreme values

• In general, encourages use of features only 
when they lead to a substantial increase in 
performance

• Problem:  How to choose λ
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A Bayesian Perspective

• Suppose we have a space of possible hypotheses H

• Which hypothesis has the highest posterior:

• P(D) does not depend on H; maximize numerator

• Uniform P(H) is called Maximum Likelihood solution 

(model for which data has highest prob.)

• P(H) can be used for regularization
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Maximum Likelihood

• For many models, the empirical mean is also 

the maximum likelihood solution

• Suppose:

– Data normally distributed

– Unknown mean, variance

– IID samples
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Maximum Likelihood for Gaussians

• Sample mean is ML solution for mean

• Sample variance is ML solution for variance
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Priors for Gaussians

• Recall Bayes rule:

• Does it make sense to have a P(H) for Gaussians?

• Yes:  Corresponds to some prior knowledge about the 
mean or variance

• Would like this knowledge to have a mathematically 
convenient form

• We will see later that the Wishart distribution is a 
conjugate prior for the Gaussian distribution w/known 
mean
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Bayesian Regression

• Assume that, given x, noise is Gaussian

• Homoscedastic noise model

Maximum Likelihood Solution
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• ML fit for mean is just linear regression fit

• ML fit for mean does not depend upon σ

Bayesian Solution

• Introduce prior distribution over weights

• Posterior now becomes:
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Comparing Regularized Regression 

with Bayesian Regresion
• Regularized Regression minimizes:

• Bayesian Regression maximizes:

• Observation:  Take log of Bayesian regression criterion and 
these become identical (up to constants)
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Regularization:  An Empirical Approach

• Problem:  We still have a magic constant that trades off 

complexity vs. fit

• Solution 1:

– Generate multiple models

– Use lots of test data to discover and discard bad models

• Solution 2 - S-fold cross validation:

– Divide data into S groups

– Create validation set i by subtracting group i form original set

– Produces S groups of size (S-1)/S

– Train on S-1, Test on held out set

– Repeat, combine results in some way 
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Conclusions

• Many methods for choosing the best 

hypothesis – no single best w/o more 

information about the task

• Maximum likelihood and minimum squared 

error on training set are similar/same under 

some common assumptions

• Regularization prevents overfitting, is 

necessary when data are scarce


