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What Makes a Good Prediction?

* Obviously: One that gives best performance in the
future, but how do we pick this in advance?

* Best match to training set?

* Best match to training set (with regularization)?

* Distribution over hypotheses?

* Convergence to “truth” in the limit of infinite data?
* Data themselves + some interpolation rule?

Loss Functions

* Predicty, measure performance against target t
* One performance criterion is the squared loss:

E(y-1)’

* Suppose we predict the mean, loss is then:

E(r—1)*

Expectation Minimize Loss

* Suppose you need to bet on an outcome
(e.g. die roll)

» Suppose loss is squared error, want:
min E(y—1)*
!

* Minimize and solve for y

Sample Mean is Consistent

» Suppose we observe X1, XM

» Assume these are independently drawn, and indentically
distributed (1ID)

* What is our estimate for E(X)?
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Chebyshev’s Inequality

» Let X have finite mean and variance:

P(X-EX)|z0) sw
C

» Variance governs our chances of missing
the mean




Convergence of Sample Mean

» Apply Chebyshev’s inequality to sample mean
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Sample Variance

* Generalization of sample mean:
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* Sample variance is biased:
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Fitting Continuous Data
(Regression)

Datum i has feature vector: ¢=(¢,(xV)...¢, (x"))
Has real valued target: t{)
Concept space: linear combinations of features:

x";w) = i%(Xm)wj =ox")'w

Learning objective: Search to find “best” w

(This is standard “data fitting” that most people
learn in some form or another.)

Linearity of Regression

» Regression typically considered a /inear
method, but...

* Features not necessarily linear
* Features not necessarily linear

» Features not necessarily linear
and, BTW, features not necessarily linear

Regression Examples

¢ Predicting housing price from:
— House size, lot size, rooms, neighborhood*, etc.
¢ Predicting weight from:
— Sex, height, ethnicity, etc.
* Predicting life expectancy increase from:
— Medication, disease state, etc.
* Predicting crop yield from:
— Precipitation, fertilizer, temperature, etc.
* Fitting polynomials
— Features are monomials

What Regression Does

* Regression
— Minimizes squared error on training set

— Projects training set into linear subspace spanned
by the features

* We will prove some of these properties later
in the class




What is the Best Choice of Polynomial?

Noisy Source Data
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Observations

Degree 3 is the best match to the source
Degree 9 is the best match to the samples
We call this over-fitting

Performance on test data:

—o6— Training
—6— Test
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What went wrong? Regularization

¢ Is the problem a bad choice of polynomial?

Idea: Penalize overly complicated answers

. ’ ? . .
Is the problem that we don’t have enough data? « Regular regression minimizes:

* Answer: Yes

M
> iwy -1y
i=l
* Regularized regression minimizes:

1 o0 N =100
W+ w1y
i=1

* Note: May exclude constants form the norm

Regularization: Why? A Bayesian Perspective

* Suppose we have a space of possible hypotheses H

AW+ 2 (55w =0 ) . . .
/w1 +Z’ v * Which hypothesis has the highest posterior:

. . p(H 1 py= POUHDPUH)
* For polynomials, extreme curves typically T D)

require extreme values

* In general, encourages use of features only
when they lead to a substantial increase in
performance

* Problem: How to choose A

* P(D) does not depend on H; maximize numerator

¢ Uniform P(H) is called Maximum Likelihood solution
(model for which data has highest prob.)

¢ P(H) can be used for regularization

Maximum Likelihood Maximum Likelihood for Gaussians
* For many models, the empirical mean is also * Sample mean is ML solution for mean
the maximum likelihood solution + Sample variance is ML solution for variance
* Suppose:
— Data normally distributed >
— Unknown mean, variance My =%
— |ID samples
P(DIH)= P’(:“’.l..t(”” | i1,0) i(f“' )
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Priors for Gaussians

* Recall Bayes rule:
P(HID)= P(DLIZ;T(H)

* Does it make sense to have a P(H) for Gaussians?

* Yes: Corresponds to some prior knowledge about the
mean or variance

* Would like this knowledge to have a mathematically
convenient form

* We will see later that the Wishart distribution is a
conjugate prior for the Gaussian distribution w/known
mean

Bayesian Regression

* Assume that, given x, noise is Gaussian
* Homoscedastic noise model

y(wo, w)

Maximum Likelihood Solution

P(DIH)=Pt"..t" 1 y(x;w),0)
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* ML fit for mean is just linear regression fit
* ML fit for mean does not depend upon ¢

Bayesian Solution

* Introduce prior distribution over weights
p(H) = p(wl@) = N(wl 0,1 1)
a

* Posterior now becomes:

P(DIH)P(H) =P .1 | y(x;w),0) P(W)
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Comparing Regularized Regression
with Bayesian Regresion

* Regularized Regression minimizes:

A W)+ (W) =1,)?

* Bayesian Regression maximizes:
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* Observation: Take log of Bayesian regression criterion and
these become identical (up to constants)

Regularization: An Empirical Approach

* Problem: We still have a magic constant that trades off
complexity vs. fit
* Solution 1:
— Generate multiple models
— Use lots of test data to discover and discard bad models
* Solution 2 - S-fold cross validation:
— Divide data into S groups
— Create validation set i by subtracting group i form original set
— Produces S groups of size (S-1)/S
— Train on S-1, Test on held out set
— Repeat, combine results in some way
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Conclusions

¢ Many methods for choosing the best
hypothesis — no single best w/o more
information about the task

¢ Maximum likelihood and minimum squared
error on training set are similar/same under
some common assumptions

* Regularization prevents overfitting, is
necessary when data are scarce




