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Deterministic Approximate 

Inference

Ron Parr

CPS 271

Deterministic vs. Stochastic

• Deterministic approximations give the same 

answer every time

• Stochastic approximations are typically based 

upon sampling:

– Might give different answers based upon different 

random number seeds

– Should converge to the correct answer in the limit

Outline

• Variational approximations

– Toy application to entropy maximization

– Example of use in EM

• Expectation propagation

Variational Approximations

• Variational is an overloaded term

• In machine learning/AI, typically refers to:
– Substitution of one functional form for another

– Substitution that ensures a one sided bound

• Main idea:  Look where the light is!

• If an optimization problem is too hard, replace the 
problem with an easier one

• Isn’t this just cheating?

• Yes, but if you do it in a clever way, you can still provide 
some guarantees

Maximizing Entropy

• Recall definition of entropy:

• Entropy is a functional (function defined over 

functions)

• Suppose we have two variables, x and y, and 

we with to find the joint distribution with 

highest entropy…
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Maximizing Entropy

• Suppose X and Y are binary

• P(XY) is a function from X,Y to [0,1]

• Specified by 3 numbers

• Entropy:
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How to maximize this?

• For simple problems, one can do the 

maximization directly (set the gradient to 0)

• What if it’s hard to do this?

• Idea:  Instead of maximizing over all 

distributions, maximize over just those in 

which X and Y are independent:
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Entropy under independence
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Maximizing Entropy under Independence

))((max))((max))((max

))(())(())((

)()()(
YPHXPHXYPH

YPHXPHXYPH

YPXPXYP
+=

+=

• Under assumption of independence:
– Maximizing entropy for joint distribution decomposes 

into maximizing entropy for individual distributions

– H maximized by uniform distribution over X and Y

• This also turns out to be the true maximum, but

• This isn’t always guaranteed!

Variational Approximation:  Discussion

• Substituting P(X)P(Y) for P(XY) was “safe”

• Could never overestimate true max entropy

• Why:

– The set of distributions where X and Y are 

independent is a subset of the set of joint 

distributions

– Reinterpretation of independence assumption:  

We aren’t computing the wrong probabilities; 

we’re merely searching a smaller space

EM

• Recall that EM seeks typically seeks to maximize the 
joint likelihood of the data (X) and parameters θ given 
some hidden variables (Z)

• Alternates between:
– Estimating:                            with w fixed

– Maximizing:

• Idea:  Alternate between estimating hidden 
parameters, and finding “best fit” model to these 
parameters 

• Example:  Gaussian mixtures
– E step:  Estimate membership in clusters

– M step:  Update clusters
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A Slightly Different View of EM
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Lumping together Z and θ , let’s maximize p(x):

Really???
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Sanity check…

))(log(

)())(log(

))(log()(

)
)|(

),(
log()(

)
)|(

)(

)(

),(
log()(

)
)(

)|(
log()

)(

),(
log()(

)
)(

)|(
log()()

)(

),(
log()(

)||()()(log

Xp

dZZqXp

dZXpZq

dZ
XZp

ZXp
Zq

dZ
XZp

Zq

Zq

ZXp
Zq

dZ
Zq

XZp

Zq

ZXp
Zq

dZ
Zq

XZp
ZqdZ

Zq

ZXp
Zq

pqKLqLXp

=

=

=

=

=

−=

−=

+=

∫

∫

∫

∫

∫

∫∫

EM Continued

• EM reinterpreted:
– E:  Maximizie L(q) keeping Z fixed

– M:  Maximize fit between q and p, keeping p fixed

• In terms of Gaussian mixtures:
– E:  Assign points cluster membership probs

– M:  Update cluster centers, variances based on membership
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Variation Approximation for EM

• Variational approximation comes into play 

when the it is hard to maximize the KL 

distance for a particular form of Q

• Example:  Clustering with priors

– Assume priors over:

• Cluster membership

• Cluster means

• Cluster variances

– Problem:  Q now has an ugly form

Variational Mixture of Gaussians

• Form of distribution with priors:

• But how do we minimize KL for:
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Dirichlet mixture membership prior:

Gaussian-Wishart priors on mean and precision:
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Variational Approximation Step

• Approximate:

• With:

• Do coordinate ascent on these separately:

• Alternate between:
– Freezing priors and updating Gaussians

– Freezing Gaussians and updating priors

• Why this is good:
– Can show that each step is tractable

– Works well in practice (can be viewed as “solving” the 
problem of how many clusters are needed)
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Summary of Variational Approach for EM

• Replace intractable maximization of Q w/something simpler

• Usually this plays out as follows:
– Make some independence assumptions that let you factor Q

– Perform coordinate ascent on the factored version of Q by 
freezing some terms while optimizing others

• Why this is safe:
– Factored representations are a subset of the space of original 

distributions

– We will never overestimate, but we might fail to find the 
globally optimal choice

• In general:  Assuming independence is not a requirement; 
it’s just a convenient choice
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Variational Approximation vs. 

Independence Assumptions

• Q:  Aren’t these just the same?

• A:  They overlap, but they aren’t identical

• Variational approximation:
– Often involves an independence assumption because 

doesn’t require it

– Often occurs in the inner loop of an optimization, driven 
by efficiency of optimization concerns

– Often applied to latent variables

• Independence assumptions:
– Usually a high level modeling decision about the observed 

and latent variables

– Driven by representation concerns

Expectation Propagation

• EP: Deterministic approximation method

• Less general than variational methods

• Quick and easy to understand an implement

• Main assumption:  Distribution is represented 

as a product of factors:

• Example:  A graphical model
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EP, continued

• We want to approximate the posterior 

distribution of the model parameters, given 

the data:

• Idea:  Do some kind of coordinate ascent by 

freezing all factors except one, and then 

updating the free parameters
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EP, continued
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What’s going on here, in English:

Freeze all components of our approximation, except one

Update our approximation locally

Repeat

EP Properties

• Is exact in some special cases

• Can be shown to be equivalent to some 

message passing algorithms for graphical 

models

Approximate Inference Conclusions

• Deterministic approximations rely upon some 

form of simplifying assumption about the model

• Often represent messy distributions with 

products of simpler distributions (factorization)

• Often replace global optimizations with local 

optimizations

• Main advantage:  Stable, predictable

• Main disadvantage:  No “anytime” property


