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Deterministic vs. Stochastic

Deterministic approximations give the same
answer every time

Stochastic approximations are typically based

upon sampling:

— Might give different answers based upon different
random number seeds

— Should converge to the correct answer in the limit

Outline
 Variational approximations

— Toy application to entropy maximization
— Example of use in EM

* Expectation propagation

Variational Approximations

Variational is an overloaded term

In machine learning/Al, typically refers to:

— Substitution of one functional form for another
— Substitution that ensures a one sided bound

Main idea: Look where the light is!

If an optimization problem is too hard, replace the
problem with an easier one

Isn’t this just cheating?

Yes, but if you do it in a clever way, you can still provide
some guarantees

Maximizing Entropy

* Recall definition of entropy:

H(P(X))=) P(X)log P(X)

* Entropy is a functional (function defined over
functions)

* Suppose we have two variables, x and y, and
we with to find the joint distribution with
highest entropy...

Maximizing Entropy

Suppose X and Y are binary

P(XY) is a function from XY to [0,1]
Specified by 3 numbers

Entropy:

H(P(XY))=" P(XY)log P(XY)
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How to maximize this?

* For simple problems, one can do the
maximization directly (set the gradient to 0)

¢ What if it’s hard to do this?

* Idea: Instead of maximizing over all
distributions, maximize over just those in
which X and Y are independent:

P(XY)=P(X)PY)

Entropy under independence

H(P(XY))= Y P(XY)log P(XY)
= g P(X)P(Y)log P(X)P(Y)
= %P(X)P(Y)(log P(X)+log P(Y))
= g P(X)P(Y)log P(X)+ Y P(X)P(Y)log P(Y)
= %P(X)log PX)Y. P(Y)X-:— > P(Y)log P(Y)Y  P(X)
:iP(X)IogP(X):ZP(Y)]:)g P(Y) '

=H(P(X))+H(PXY))

Maximizing Entropy under Independence

H(P(XY))=H(P(X))+H(P(Y))
{,I(I%H(P(XY)) = r;}g))iH(P(X)) + r}}(ggﬁH(P(Y))

* Under assumption of independence:

— Maximizing entropy for joint distribution decomposes
into maximizing entropy for individual distributions

— H maximized by uniform distribution over X and Y
* This also turns out to be the true maximum, but
* This isn’t always guaranteed!

Variational Approximation: Discussion

* Substituting P(X)P(Y) for P(XY) was “safe”
* Could never overestimate true max entropy

* Why:

— The set of distributions where X and Y are
independent is a subset of the set of joint
distributions

— Reinterpretation of independence assumption:
We aren’t computing the wrong probabilities;
we’re merely searching a smaller space

EM

* Recall that EM seeks typically seeks to maximize the
joint likelihood of the data (X) and parameters 6 given
some hidden variables (2)

Alternates between:

— Estimating: Q“*=p|D,6") with w fixed
— Maximizing: 0 = arg max Y p(Z|D,0")log p(D,Z |6*)

* |dea: Alternate between estimating hidden
parameters, and finding “best fit” model to these
parameters

* Example: Gaussian mixtures
— E step: Estimate membershipin clusters

— M step: Update clusters

A Slightly Different View of EM

Lumping together Z and 0, let’s maximize p(x):

log p(X) = L(¢)+KL(q1l p)
L) = [a@D1oa(PEL)y i
(@) =[4(Z)log( 2 -

KL(ql p)=—[ q@)1og P E LX)y,
(a!l p) == (Z)log( 2~

Really???




Sanity check...
log p(X) = L(q)+KL(ql p)
= Jaoa P4z ~ [ (2o

p(X,2) p(Z1X)
1
«@ @
PX.7) 4@,
92) pZIx)
rX, Z)) 07
p(Z1X)
= [a()log(p(X))iz
=log(p(X))[ 9(2)dz
=log(p(X))

p(Z1X)

Z
())d

=[a@)1og( )z
=[a@)log P22

=[a@)10g(
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EM Continued

log p(X) = L(q)+KL(ql p)

1) = [a@loa( "0

KL(gl p) == q(Z)log(==—==

iz

p(X1Z)

2 )dz

* EM reinterpreted:

— E: Maximizie L(q) keeping Z fixed
— M: Maximize fit between q and p, keeping p fixed

* Interms of Gaussian mixtures:

— E: Assign points cluster membership probs
— M: Update cluster centers, variances based on membership

Variation Approximation for EM

Variational approximation comes into play
when the it is hard to maximize the KL
distance for a particular form of Q

Example: Clustering with priors
— Assume priors over:

¢ Cluster membership

¢ Cluster means

« Cluster variances

— Problem: Q now has an ugly form

p(X,Z, 7, 14, A) =

Variational Mixture of Gaussians

* Form of distribution with priors:

Dirichlet mixture membership prior: |

Gaussian-Wishart priors on mean and precision:

* But how do we minimize KL for: ¢(Z, 7z, u,A)

PXVZ, 1, N p(Z170) p(7) p(p 1 A) p(A)
R

Variational Approximation Step

Approximate: q(Z,7.u,7A)

With: ¢(Z)q(z, 1. A)

Do coordinate ascent on these separately:
Alternate between:

— Freezing priors and updating Gaussians

— Freezing Gaussians and updating priors

Why this is good:

— Can show that each step is tractable

— Works well in practice (can be viewed as “solving” the
problem of how many clusters are needed)

Summary of Variational Approach for EM

Replace intractable maximization of Q w/something simpler
Usually this plays out as follows:
— Make some independence assumptions that let you factor Q
— Perform coordinate ascent on the factored version of Q by
freezing some terms while optimizing others
Why this is safe:
— Factored representations are a subset of the space of original
distributions
— We will never overestimate, but we might fail to find the
globally optimal choice
In general: Assuming independence is not a requirement;
it’s just a convenient choice




Variational Approximation vs.
Independence Assumptions

Q: Aren’t these just the same?
A: They overlap, but they aren’t identical
Variational approximation:

— Often involves an independence assumption because
doesn’t require it

— Often occurs in the inner loop of an optimization, driven
by efficiency of optimization concerns

— Often applied to latent variables
Independence assumptions:

— Usually a high level modeling decision about the observed
and latent variables

— Driven by representation concerns
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Expectation Propagation

¢ EP: Deterministic approximation method
* Less general than variational methods
* Quick and easy to understand an implement

* Main assumption: Distribution is represented
as a product of factors:

PD.0)=]]/®

* Example: A graphical model

EP, continued

We want to approximate the posterior
distribution of the model parameters, given
the data:

r&=2 17

Idea: Do some kind of coordinate ascent by
freezing all factors except one, and then
updating the free parameters

EP, continued
Initialize : f
Initialize : ¢(6) < [ ] /,(0)
Repeat until conver’gence :
Choose some : fi(ﬁ)
9(6)
1:(0)
fit g™ (8)to " (6) f;(6)
z,=[4"(©)f,0)d0

compute: g/ () =

- W“’(g) What’s going on here, in English:
., 4
f,(B) =Z; y] Freeze all components of our approximation, except one
q (9) Update our approximation locally

Repeat

EP Properties

Is exact in some special cases

Can be shown to be equivalent to some
message passing algorithms for graphical
models

Approximate Inference Conclusions

* Deterministic approximations rely upon some
form of simplifying assumption about the model

* Often represent messy distributions with
products of simpler distributions (factorization)

* Often replace global optimizations with local
optimizations

* Main advantage: Stable, predictable

* Main disadvantage: No “anytime” property




