Probability Distributions

CPS 271 Ron Parr

Some Figures courtesy Andrew Ng and Chris Bishop and $\ \, \ \, \ \, \ \, \ \, \ \,$ original authors. Thanks to Lise Getoor for some slides

Bernouli Distribution

- What is P(x=I(heads)=1)?
- $P(x)=\mu$
- $E(x)=\mu$
- $Var(x) = \mu(1 \mu)$
- Empirical mean = Sample mean = maximum likelihood = μ_{MI}

Is The Empirical Mean Reasonable?

- ML solution is presented as frequentist solution
- We know:
 - $-E(\mu_{ML})=\mu$
 - $-~\mu_{\text{ML}}$ converges to μ
- What about small numbers of samples?

Binomial Distribution

- · Probability of getting m heads in N flips?
- · Add up different ways this can happen

$$Bin(m \mid N, \mu) = \binom{N}{m} \mu^m (1 - \mu)^{(N-m)}$$

$$E(m) = N\mu$$
$$Var(m) = N(1 - \mu)\mu$$

Conjugate Priors

- We know μ_{ML} maximizes P(D|H)
- For small data sets, this seems unreliable
- Can we maximize P(H|D)=P(D|H)P(H)/P(D)?
- · Questions:
 - What form should P(H) take?
 - If H is in some class (binomial, Bernouli), we want $P(D\,|\,H)P(H)\!=\!P(HD)$ to generate answers that are also in this class
- In general, if P(D|H)P(H) is in the same class as P(H), we say that P(H) is conjugate for P(D|H)

Background: Gamma Function

• For discrete variables:

$$\Gamma(x+1) = x!$$

$$\Gamma(x+1) = x\Gamma(x)$$

• For continuous variables, continuous generalization of factorial:

$$\Gamma(x) = \int_{0}^{\infty} u^{x-1} e^{-u} du$$

$$\Gamma(x+1) = x\Gamma(x)$$

Beta Distribution

$$\begin{split} Beta(\mu \mid a,b) &= \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \, \mu^{a-1} (1-\mu)^{b-1} \\ E(\mu) &= \frac{a}{a+b} \end{split}$$

Observation: Beta has very similar form to binomial

Posterior with Beta Prior

- Want P(D|H)P(H)
- P(D|H) = Binomial
- P(H)=Beta

$$\begin{split} P(D \mid H)P(H) & \propto \mu^{m} (1-\mu)^{N-m} \mu^{a-1} (1-\mu)^{b-1} = \mu^{m+a-1} (1-\mu)^{N-m+b-1} \\ P(H \mid D) & = \frac{\Gamma(m+a+N-m+b)}{\Gamma(m+a)\Gamma(N-m+b)} \mu^{m+a-1} (1-\mu)^{N-m+b-1} \\ & = beta(\mu \mid m+a,N-m+b) \\ & \approx Bin(m+a \mid \mu,N+a+b) \end{split}$$

Interpreting the Beta Prior

$$\begin{split} &P(D \mid H)P(H) \propto \mu^{m}(1-\mu)^{N-m} \mu^{a-1}(1-\mu)^{b-1} = \mu^{m+a-1}(1-\mu)^{N-m+b-1} \\ &P(H \mid D) = \frac{\Gamma(m+a+N-m+b)}{\Gamma(m+a)\Gamma(N-m+b)} \mu^{m+a-1}(1-\mu)^{N-m+b-1} \\ &= beta(\mu \mid m+a, N-m+b) \\ &\approx Bin(m+a \mid \mu, N+a+b) \end{split}$$

- A beta prior with parameters a,b is like having "imagined" a previous heads, b previous tails
- Examples:
 - a=b=1000 implies strong prior towards fairness
 - a=b=1 implies weak prior towards fairness
 - a=1000, b=1 implies strong prior towards heads bias
 - a=1, b=1000 implies weak prior towards head bias

Multinomial

• Multinomial generalizes binomial to >2 outcomes

$$Mult(m_1,...,m_K \mid \boldsymbol{\mu}, N) = \binom{N!}{m_1!...m_K!} \prod_{k=1}^K \mu_k^{m_k}$$

· Dirichlet is conjugate

$$dir(\mathbf{\mu}, \boldsymbol{\alpha}) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1) \dots \Gamma(\alpha_K)} \prod_{k=1}^K \mu_k^{\alpha_k - 1}$$
$$\alpha_0 = \sum_{k=1}^K \alpha_k$$

• α parameters correspond to phantom observations

Multivariate Gaussian Distribution

- also called multivariate normal
- First, recall the univariate Gaussian distribution:

$$p(x;\mu,\sigma) = \frac{1}{(2\pi)^{1/2}\sigma} exp \left[-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2} \right]$$

• where μ is the mean and σ^2 is the variance

Multivariate Gaussian Distribution

• A 2-dimensional Gaussian is defined by a mean vector μ = (μ_1,μ_2) and a covariance matrix:

$$\boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\sigma}_{1,1}^2 & \boldsymbol{\sigma}_{1,2}^2 \\ \boldsymbol{\sigma}_{2,1}^2 & \boldsymbol{\sigma}_{2,2}^2 \end{bmatrix}$$

- where $\sigma_{i,j}^2 = E[(x_i \mu_i)(x_j \mu_j)]$ - is the variance if $x_i = x_i$
 - covariance if x_i≠x_i

$$p(x; \mu, \Sigma) = \frac{1}{(2\pi) |\Sigma|^{\frac{1}{2}}} exp \left[-\frac{1}{2} (x - \mu)^{T} \Sigma^{-1} (x - \mu) \right]$$

MVG examples

MVG examples

MVG examples - contour plots

MVG examples

Multivariate normal distribution

- We can generalize this to n dimensions
- parameters
 - mean vector μ ∈ ℜⁿ
 - a covariance matrix $\Sigma\in\Re^{n\times n},$ where $\Sigma\geq 0$ is symmetric and positive semi-definite
- Written $N(\mu, \Sigma)$, density is

$$p(\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{n/2}|\boldsymbol{\Sigma}|^{\frac{1}{2}}} exp\bigg[-\frac{1}{2} \big(\boldsymbol{x} - \boldsymbol{\mu}\big)^T \boldsymbol{\Sigma}^{-1} \big(\boldsymbol{x} - \boldsymbol{\mu}\big) \bigg]$$

- where $|\Sigma|$ is the determinant of the matrix Σ
- $$\begin{split} \bullet & \quad \text{For } X \sim N(\mu, \ \Sigma) \\ & \quad \quad \text{E}[X] = J_{_{X}X} \ p(x; \ \mu, \ \Sigma) \ dx = \mu \\ & \quad \quad \text{Cov}(X) = \text{E}[XX^T] (\text{E}[X])(\text{E}[X])^T = \ \Sigma \end{split}$$

A note about covariances

- By construction, the covariance matrix is
 - Symmetric
 - Positive semi-definite
- Diagonal covariance matrices:
 - Can be expressed as a product of I and a vector of variances
 - Imply independence between variables

Useful Properties of Gaussians I

- Surfaces of equal probability for standard (mean 0, I covariance) Gaussians are spheroids
- Surfaces of equal probability for general Gaussians are ellipsoids
- Every general Gaussian can be viewed as a standard Gaussian that has undergone an affine transformation

Useful Properties of Gaussians II

- A Gaussian distribution is completely specific by the a vector of means and covariance matrix
- Requires O(n2) space
- Requires O(n³) time to manipulate
- If these seem bad, recall that a joint distribution over n binary variables requires O(2ⁿ) space

Useful Properties of Gaussians III

- · Marginals of Gaussians are Gaussian
- Given:

$$x = (x_a, x_b), \mu = (\mu_a, \mu_b)$$

$$\Sigma = \begin{pmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma & \Sigma \end{pmatrix}$$

• Marginal Distribution:

$$p(x_a) = N(x_a \mid \mu_a, \Sigma_{aa})$$

(Marginalize by ignoring)

Useful Properties of Gaussians IV

- Conditionals of Gaussians are Gaussian
- Notation:

$$\Lambda = \Sigma^{-1} = \begin{pmatrix} \Lambda_{aa} & \Lambda_{ab} \\ \Lambda_{ba} & \Lambda_{bb} \end{pmatrix}$$

• Conditional Distribution:

$$p(x_a \mid x_b) = N(x_a \mid \mu_{alb}, \Lambda_{aa}^{-1})$$
$$\mu_{alb} = \mu_a - \Lambda_{aa}^{-1} \Lambda_{ab} (x_b - \mu_a)$$

Useful Properties of Gaussians V

- Affine transformations of Gaussian variables are Gaussian
 - Suppose x is Gaussian
 - y=Ax+b is Gaussian
- Uses:
 - Compute distribution on Y from distribution on x
 - Compute posterior on x after observing y

Useful Properties of Gaussians

- Lots of things can (arguably) be approximated well by Gaussians
- The central limit theorem: The sum of IID variables with finite variances will tend towards a Gaussian distribution
- Note: This is often used a hand-waving argument to justify using the Gaussian distribution for almost anything

Limitations of Gaussians

- Gaussians are unimodal (single peak at mean)
- O(n2) and O(n3) can get expensive
- Definite integrals of Gaussian distributions do not have a closed form solution (somewhat inconvenient)
 - Must approximate, use lookup tables, etc.
 - Sampling from Gaussian is inelegant

Mixtures of Gaussians

- Want to approximate distribution that is not unimodal?
- Density is weighted combination of Gaussians

$$p(x) = \sum_{k=1}^{K} \pi_k N(x \mid \mu_k, \Sigma_k)$$
$$\sum_{k=1}^{K} \pi_k = 1$$

- Idea: Flip coin (roll dice) to select Gaussian, then sample from the Gaussian
- Can be arbitrarily expressive with enough Gaussians

Fitting Gaussians

- · Maximum Likelihood
- Mean:

$$\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

• Covariance:

$$\Sigma_{ML} = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{ML}) (x_n - \mu_{ML})^T$$

Bayesian Fits with Known Variance

• Can use a Gaussian prior:

$$p(\mu) = N(\mu \mid \mu_0, \sigma_0^2)$$

• Posterior:

$$p(\mu \mid X) = N(\mu \mid \mu_{N}, \sigma_{N}^{2})$$

$$\mu_{N} = \frac{\sigma^{2}}{N\sigma_{0}^{2} + \sigma^{2}} + \frac{N\sigma_{0}^{2}}{N\sigma_{0}^{2} + \sigma^{2}} \mu_{ML}$$

$$\frac{1}{\sigma_{N}^{2}} = \frac{1}{\sigma_{0}^{2}} + \frac{N}{\sigma^{2}}$$

Bayesian Fit with Unknown Variance, Known Mean

- For single variable, gamma distribution is conjugate
- For multiple variables, Wishart is conjugate
- No conjugate for unknown mean & variance