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Bernouli Distribution

What is P(x=I(heads)=1)?
* P(x)=p

* E(x)=p

Var(x)= p(1- )

¢ Empirical mean = Sample mean = maximum
likelihood = iy,

Is The Empirical Mean Reasonable?

* ML solution is presented as frequentist
solution

* We know:

—E(w)= 1
— My COnverges to [

* What about small numbers of samples?

Binomial Distribution

* Probability of getting m heads in N flips?
* Add up different ways this can happen
N .
Bin(m| N, ) =( ]ﬂm(l—ﬂ)w "
m

E(m)=Nu
Var(m)=N(1-u)u

Conjugate Priors

* We know W, maximizes P(D|H)
* For small data sets, this seems unreliable
* Can we maximize P(H|D)=P(D|H)P(H)/P(D)?
* Questions:
— What form should P(H) take?

— If H is in some class (binomial, Bernouli), we want
P(D|H)P(H)=P(HD) to generate answers that are also
in this class

* In general, if P(D|H)P(H) is in the same class as
P(H), we say that P(H) is conjugate for P(D|H)

Background: Gamma Function

* For discrete variables:

T'(x+1)=x!
T(x+1) =xI"(x)

¢ For continuous variables, continuous
generalization of factorial:

I'(x)= Iu e du
0

T'(x+1D)=xI'(x)




Beta Distribution

7F(a+b) a-1¢1 _ ,\b-1
Beta(,ula,b)—il_(a)r(b)ﬂ (7))
a
E(w) =
(40 P
var(y=——%
#_(a+b)2(a+b+1)

Observation: Beta has very similar form to binomial
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Posterior with Beta Prior

« Want P(D|H)P(H)
* P(D|H) = Binomial
* P(H)=Beta

P(DIH)P(H ) o< p" (1= )" ™" ™ (=)™ = ™ (=)™
I'(m+a+N-m+b)
T'(m+a)l'(N —m+Db)
=beta(Ilm+a,N —m+Db)
= Bin(m+al u,N+a+Db)

P(H | D) — ﬂnz+a—l (1 _lu)N—mH)—l

Interpreting the Beta Prior

P(DIH)P(H) o< " (1= )" " ™ (1= )™ = 7 (= gy
T'(m+a+N-m+b)
T'(m+a)l'(N-m+Db)
=beta(u!m+a,N—m+b)
= Bin(m+alu,N+a+b)

P(HID)= e (- N-m+b-1

* A beta prior with parameters a,b is like having
“imagined” a previous heads, b previous tails

e Examples:
— a=b=1000 implies strong prior towards fairness
— a=b=1implies weak prior towards fairness
— a=1000, b=1 implies strong prior towards heads bias
— a=1, b=1000 implies weak prior towards head bias

Multivariate Gaussian Distribution

« also called multivariate normal

« First, recall the univariate Gaussian distribution:
2

1(x—p) }

1 i
@n)" e exp{ 2 o

where L is the mean and ¢? is the variance
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Multinomial
* Multinomial generalizes binomial to >2 outcomes

Nl
Mult(m,...,m, |p,N) = ="

my).mg! )i

 Dirichlet is conjugate

o T@) oy an
i) = Tiap 14
K
=Y a,
k=1

* o parameters correspond to phantom observations

Multivariate Gaussian Distribution

« A 2-dimensional Gaussian is defined by a mean vector pu =
(14,11,) and a covariance matrix:

cfe ]
Tl &2 2
Gz.l GZ.Z
« where GiJ:E[(X.—H.)(X,—HJ)]

- s the variance if x=x;
— covariance if XX

p(X;u, E) = —— exp{—%(x T u)}

(2n) |5*
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Standard normal distribution

10
We get the standard normal for £ = the identity matrix £ = |:() }

and n=(0,0)

MVG examples
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MVG examples
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MVG examples

MVG examples — contour plots

3

Multivariate normal distribution

* We can generalize this to n dimensions
* parameters
— mean vector p e R"
— acovariance matrix £ € X™n, where X > 0 is symmetric and positive
semi-definite

«  Written N(u, X), density is
1 T
P(X; 1, %) = %exp[—i(x -1) T (x—p)
(@nf e
« where |Z| is the determinant of the matrix £
* For X ~N(u, X)

— EIX] =[x px; u, £)dx = p
— Cov(X) = E[XXT] - (EX)(E[X])"= =




A note about covariances

e By construction, the covariance matrix is
— Symmetric
— Positive semi-definite

* Diagonal covariance matrices:

— Can be expressed as a product of | and a vector of
variances

— Imply independence between variables
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Useful Properties of Gaussians |

 Surfaces of equal probability for standard
(mean 0, | covariance) Gaussians are spheroids

* Surfaces of equal probability for general
Gaussians are ellipsoids

* Every general Gaussian can be viewed as a
standard Gaussian that has undergone an affine
transformation

Useful Properties of Gaussians |l

* A Gaussian distribution is completely specific by
the a vector of means and covariance matrix

* Requires O(n?) space
* Requires O(n3) time to manipulate

* If these seem bad, recall that a joint distribution
over n binary variables requires O(2") space

Useful Properties of Gaussians Il

* Marginals of Gaussians are Gaussian

T GIVeN: (= (i)

[ZM Euh]
Y=

Zbu Zhb
* Marginal Distribution:

p(x,)=N(x, 1 4,,2,,)

* (Marginalize by ignoring)

Useful Properties of Gaussians IV

* Conditionals of Gaussians are Gaussian

A=Y= A ANy
N N Ahu Ahh

¢ Conditional Distribution:

* Notation:

P 1%)= N, gy A,
My =H,— AuuiIAuh (X, —4,)

Visualizing Marginalization & Conditioning

=07
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Useful Properties of Gaussians V Useful Properties of Gaussians

« Affine transformations of Gaussian variables * Lots of things can (arguably) be approximated
are Gaussian well by Gaussians
— Suppose x is Gaussian * The central limit theorem: The sum of IID
—y=Ax+b is Gaussian variables with finite variances will tend
U towards a Gaussian distribution

* Uses:

— Compute distribution on Y from distribution on x

) ) * Note: This is often used a hand-waving
— Compute posterior on x after observing y

argument to justify using the Gaussian
distribution for almost anything

Limitations of Gaussians Mixtures of Gaussians
« Gaussians are unimodal (single peak at mean) * Want to approximate distribution that is not unimodal?
. * Density is weighted combination of Gaussians
* 0(n?) and O(n3) can get expensive

* Definite integrals of Gaussiar'1 distributions do P =3 TN 1.5,
not have a closed form solution (somewhat .
inconvenient) > =1

k=1

Idea: Flip coin (roll dice) to select Gaussian, then
sample from the Gaussian

— Must approximate, use lookup tables, etc.

— Sampling from Gaussian is inelegant

* Can be arbitrarily expressive with enough Gaussians

Mixture of Gaussians Example Fitting Gaussians

¢ Maximum Likelihood
* Mean:

* Covariance:

l N
L= ﬁz(xn = My )(x, _/UML)T

n=1
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Bayesian Fits with Known Variance

* Can use a Gaussian prior:

* Posterior:

p(u)=N(u! .0,

puIX)=Nulu,.0,°)

2 2

u, = (o N NO-U“ u
N T 2 2 ML
No,"+0° No, +o0°
1 1 N
2= "2 2
o, o’ ©

Bayesian Fit with Unknown Variance,
Known Mean

* For single variable, gamma distribution is
conjugate

* For multiple variables, Wishart is conjugate

* No conjugate for unknown mean & variance




