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The Usual Caveats
e Thisis only a very brief overview

o A proper treatment takes:
— More time than we have
— More patience than you have this late in the semester ©

First: HMMs

* The easy case:

— Suppose you have a complete record of
e Underlying states
¢ Observations

e What would you do???

Estimate Probabilities

¢ Estimate probabilities from relative frequencies
P(si|s;) = #(s; tos; transitions)/#(sj occurrences)
P(o;|s;) = #(o; observations in s)) /#(sj occurrences)
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e Why is this valid???
— Markov assumption
— Relative frequency is max likelihood solution

What if Underlying States not Known?

¢ All we see is trajectories of observations
e True states are hidden variables
e EM to the rescue!
e Estep:
— Use forward-backward/variable elimination to estimate
P(s;s;) for all pairs, for all trajectories
e M step:
— Compute, P(s;|s;), P(o;]s)) given results of E-step

— Note: For soft EM, this means adding fractional state
transitions

Getting the pairwise probabilities

e Forward and backward steps are already doing most of
the work for this:
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* Also expressed as p(x;x;), o f(x;).P(x;] x;)b(x;),

¢ Smoothed estimate is the normalized product of the
forward and backward estimates




EM for HMMs

e Converges to local optimum
* Most commonly used method for HMM learning
e Used for speech recognition, target detection, tracking, etc.

¢ How to pick number of states?
— Just guess?
— Just pick a big number?
— When does it matter?
— Can cross validation help?
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¢ Training data have the form: O
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Learning Parameters for a
Bayesian Network
* By definition of Bayes net, we get <
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Learning Bayesian Networks:
Known Structure Case

¢ Given a network structure G
e Learn parameters for network
Goal

e Construct a network that is “closest” to
probability that generated the data
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* Since we assume i.i.d. samples, D
likelihood function is O
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Network parameters (CPTs)
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General Bayesian Networks

Generalizing for any Bayesian network:
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¢ The likelihood decomposes according to the
structure of the network.

e Bottom line: Optimize each CPT individually

Learning BNs with Missing Data

e Some variable values may be missing

e Assume no systematic pattern to omissions

e And the trick is...

* You guessed it, EM!

o E step computes distribution over missing vars

e M step does “fully obervable” Bayes net learning
(using results from E step)

Learning w/unknown Structure

e Great application: Learning structure of biological
regulatory networks

¢ Recall that we typically want to maximize:
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e Our M step previously maximized P(D|©)
¢ O now includes the space of models
e Whis is this more complicated now?

— Closed form solution? (kind of)

— Need for regularization

Need for Regularization

e Fully connected model will almost always have
higher likelihood if P(@) is uniform!

e Typically introduce a structural prior to penalize
structures that are complex (e.g. high parent
count)

P(D16)P(0)
* This complicates search: P(D)
— No closed form solution for best BN
— Usually do some kind of local search

Conclusions
¢ Learning w/known structure, full observability is easy

e Learning with partial observability is trickier
— EM is our friend
— We like EM

¢ Learning with unknown structure is quite tricky




