Learning in HMMs and Bayes Nets

Ron Parr CPS 271

With some content courtesy of Lise Getoor

The Usual Caveats

- This is only a very brief overview
- A proper treatment takes:
 - More time than we have
 - More patience than you have this late in the semester ©

First: HMMs

- The easy case:
 - Suppose you have a complete record of
 - Underlying states
 - Observations
- What would you do???

Estimate Probabilities

- Estimate probabilities from relative frequencies
- P(s_i|s_i) = #(s_i to s_i transitions)/#(s_i occurrences)
- $P(o_i|s_i) = \#(o_i \text{ observations in } s_i) / \#(s_i \text{ occurrences})$
- Why is this valid???
 - Markov assumption
 - Relative frequency is max likelihood solution

What if Underlying States not Known?

- All we see is trajectories of observations
- True states are hidden variables
- EM to the rescue!
- E step:
 - Use forward-backward/variable elimination to estimate $P(s_is_j)$ for all pairs, for all trajectories
- M step
 - Compute, $P(s_i|s_i)$, $P(o_i|s_i)$ given results of E-step
 - Note: For soft EM, this means adding fractional state transitions

Getting the pairwise probabilities

• Forward and backward steps are already doing most of the work for this:

- • Also expressed as $p(x_i, x_j)_t \alpha f(x_i)_t P(x_j \mid x_i) b(x_j)_t$
- Smoothed estimate is the normalized product of the forward and backward estimates

EM for HMMs

- Converges to local optimum
- Most commonly used method for HMM learning
- Used for speech recognition, target detection, tracking, etc.
- How to pick number of states?
 - Just guess?
 - Just pick a big number?
 - When does it matter?
 - Can cross validation help?

Learning Bayesian Networks: Known Structure Case

- Given a network structure G
- Learn parameters for network

Goal

 Construct a network that is "closest" to probability that generated the data

Learning Parameters for a Bayesian Network

• Training data have the form:

$$D = \begin{bmatrix} E[1] & B[1] & A[1] & C[1] \\ \vdots & \vdots & \ddots & \vdots \\ E[M] & B[M] & A[M] & C[M] \end{bmatrix}$$

Learning Parameters for a Bayesian Network

$$L(\Theta:D) = \prod_{m} P(E[m], B[m], A[m], C[m]:\Theta)$$

Network parameters (CPTs)

Learning Parameters for a Bayesian Network

$$L(\Theta:D) = \prod_{m} P(E[m], B[m], A[m], C[m]: \Theta)$$

$$= \prod_{m} P(E[m]: \Theta) P(B[m]: \Theta) P(A[m] \mid B[m], E[m]: \Theta) P(C[m] \mid A[m]: \Theta)$$

Learning Parameters for a Bayesian Network •

• Rewriting terms, we get

 $L(\Theta:D) = \prod_{m} P(E[m], B[m], A[m], C[m]: \Theta)$

 $= \prod P(E[m] : \Theta) \prod P(B[m] : \Theta) \prod P(A[m] \mid B[m], E[m] : \Theta) \prod P(C[m] \mid A[m] : \Theta)$

General Bayesian Networks

Generalizing for any Bayesian network:

$$\begin{split} \mathcal{L}(\Theta:\mathcal{D}) &= \prod_{m} P(x_1[m], \dots, x_n[m] : \Theta) \\ &= \prod_{m} \prod_{i} P(x_i[m] \mid Pa_i[m] : \Theta_i) \\ &= \prod_{i} \prod_{m} P(x_i[m] \mid Pa_i[m] : \Theta_i) \\ &= \prod_{i} \mathcal{L}_i(\Theta_i : \mathcal{D}) \end{split}$$

- The likelihood **decomposes** according to the structure of the network.
- Bottom line: Optimize each CPT individually

Learning BNs with Missing Data

- · Some variable values may be missing
- Assume no systematic pattern to omissions
- · And the trick is...
- You guessed it, EM!
- E step computes distribution over missing vars
- M step does "fully obervable" Bayes net learning (using results from E step)

Learning w/unknown Structure

- Great application: Learning structure of biological regulatory networks
- Recall that we typically want to maximize:

$$\frac{P(D \,|\, \theta)P(\theta)}{P(D)}$$

- Our M step previously maximized P(D|Θ)
- O now includes the space of models
- Whis is this more complicated now?
 - Closed form solution? (kind of)
 - Need for regularization

Need for Regularization

- Fully connected model will almost always have higher likelihood if P(Θ) is uniform!
- Typically introduce a structural prior to penalize structures that are complex (e.g. high parent count)

• This complicates search:

 $\frac{P(D \mid \theta)P(\theta)}{P(D)}$

- No closed form solution for best BN
- Usually do some kind of local search

Conclusions

- Learning w/known structure, full observability is easy
- Learning with partial observability is trickier
 - EM is our friend
 - We like EM
- Learning with unknown structure is quite tricky