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Learning in HMMs

and

Bayes Nets

Ron Parr

CPS 271

With some content courtesy of Lise Getoor

The Usual Caveats

• This is only a very brief overview

• A proper treatment takes:

– More time than we have

– More patience than you have this late in the semester  ☺

First: HMMs

• The easy case:

– Suppose you have a complete record of

• Underlying states

• Observations

• What would you do???

Estimate Probabilities

• Estimate probabilities from relative frequencies

• P(si|sj) = #(sj to si transitions)/#(sj occurrences)

• P(oi|sj) = #(oi observations in sj) /#(sj occurrences)

• Why is this valid???

– Markov assumption

– Relative frequency is max likelihood solution

What if Underlying States not Known?

• All we see is trajectories of observations

• True states are hidden variables

• EM to the rescue!

• E step:

– Use forward-backward/variable elimination to estimate 
P(sisj) for all pairs, for all trajectories

• M step:

– Compute, P(si|sj), P(oi|sj) given results of E-step

– Note:  For soft EM, this means adding fractional state 
transitions

Getting the pairwise probabilities

• Forward and backward steps are already doing most of 

the work for this:

• Also expressed as p(xi,xj)t α f(xi)tP(xj|xi)b(xj)t

• Smoothed estimate is the normalized product of the 

forward and backward estimates
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EM for HMMs

• Converges to local optimum

• Most commonly used method for HMM learning

• Used for speech recognition, target detection, tracking, etc.

• How to pick number of states?

– Just guess?

– Just pick a big number?

– When does it matter?

– Can cross validation help?

Learning Bayesian Networks:  

Known Structure Case

• Given a network structure G

• Learn parameters for network

Goal

• Construct a network that is “closest” to 

probability that generated the data

Learning Parameters for a 

Bayesian Network E B
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• Training data have the form:

Learning Parameters for a 

Bayesian Network E B

A

C

• Since we assume i.i.d. samples,

likelihood function is
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Network parameters (CPTs)

Learning Parameters for a 

Bayesian Network
E B
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• By definition of Bayes net, we get
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Learning Parameters for a 

Bayesian Network E B
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• Rewriting terms, we get
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General Bayesian Networks

Generalizing for any Bayesian network:

• The likelihood decomposes according to the 
structure of the network.

• Bottom line:  Optimize each CPT individually
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Network factorization

Learning BNs with Missing Data

• Some variable values may be missing

• Assume no systematic pattern to omissions

• And the trick is…

• You guessed it, EM!

• E step computes distribution over missing vars

• M step does “fully obervable” Bayes net learning 

(using results from E step)

Learning w/unknown Structure

• Great application: Learning structure of biological 
regulatory networks

• Recall that we typically want to maximize:

• Our M step previously maximized P(D|Θ)

• Θ now includes the space of models

• Whis is this more complicated now?

– Closed form solution? (kind of)

– Need for regularization

)(

)()|(

DP

PDP θθ

Need for Regularization

• Fully connected model will almost always have 
higher likelihood if P(Θ) is uniform!

• Typically introduce a structural prior to penalize 
structures that are complex (e.g. high parent 
count)

• This complicates search:

– No closed form solution for best BN

– Usually do some kind of local search
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Conclusions

• Learning w/known structure, full observability is easy

• Learning with partial observability is trickier

– EM is our friend

– We like EM

• Learning with unknown structure is quite tricky


