Machine Learning Intro

CPS 271
Ron Parr

Contact Information

- Professor
- Ron Parr
- D209 LSRC, parr@cs.duke.edu, 660-6537
- Office hours: M 10-11, Th 9-10
- TA
- Susanna Ricco
- D214 LSRC, sricco@cs.duke.edu, 660-6513
- Office hours: M 3-4, W 1-2

About Me

- My eighth year at Duke
- Bachelor's degree in philosophy
- Philosophy of mind
- Ph.D. in computer science
- Hierarchical planning under uncertainty
- Current interests:
- Planning under uncertainty
- Reinforcement learning
- Probabilistic reasoning
- Game theory
- Robotics

Requirements

- Some programming skills
- Write small programs without drama
- Useful for project
- Prequesites
- Short proofs
- Basic algorithmic concepts
- Complexity - O()
- Analysis of algorithms
- Math
- Some calculus
- Linear Algebra
- Basic probability and statistics

Class Mechanics

- Reading
- Textbook: Pattern Recognition and Machine Learning, Christopher M. Bishop
- Supplementary handouts and papers (learning theory reinforcement learning)
- Homeworks: 10\%
- Typically assigned on Tuesdays; due next Thursday
- Discussion OK, write-up must be your own
- Project: 30\%
- Up to 2 person collaboration
- Midterm: 30\%
- Closed book, in class, no collaboration
- Final: 30\%
- Closed book, finals week, no collaboration

Some other ML Books

- Neural Networks for Pattern Recognition, Christopher M. Bishop
- The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani, \& Jerome Friedman
- Machine Learning, Tom M. Mitchell

Major Topics Covered

- Foundations
- Probability*
- Statistics
- Regularization \& Learning Theory
- Types of learning
- Supervised Learning
- Linear classifiers
- Support Vector Machines and Kernel Methods
- Reinforcement Learning*
- Decision Theory
- MDPs
- RL Algorithms
- Unsupervised Learning
- Clustering
- PCA
- Bayes nets* learning
- HMM^{*} learning
(* = some overlap with 270)

Project

- Typical: Apply ML to a problem of interest
- Demonstrate success/failure of ML
- Provide insight into what worked, what didn't
- Evaluate alternatives
- Atypical but still possible
- Propose, evaluate a new learning method
- Prove new theoretical results

Major Topics Not Covered

- Genetic algorithms
- Biological basis of learning

Who Does Machine Learning (@Duke)

- CS:
- Faculty: Pankaj Agarwal, Vince Conitzer, Alex Hartemink, Kamesh Munagala, Ron Parr, Carlo Tomasi, Jun Yang
- ISDS (everybody, but especially):
- Scott Schmidler, Sayan Mukherjee
- IGSP:
- Terry Furey, Uwe Ohler
- Engineering:
- Larry Carin, Silvia Ferrari, Rebecca Willett

Who Hires in Machine Learning?

- Universities
- Microsoft Research
- Search: Google/Yahoo/Amazon
- Defense contractors
- Some financial institutions (quietly)
- Many startups
- ML viewed as good background for many other tasks (robotics, vision, systems, engineering)

Where to Publish/Find ML Papers

Conferences:

- International Conference on Machine Learning (ICML)
- Neural Information Processing Systems (NIPS)
- Uncertainty in Artificial Intelligence (UAI)
- Association for the Advancement of Artificial Intelligence (AAAI)
- International Joint Conference on Artificial Intelligence (IJCAI)
- Knowledge Discovering in Databases (KDD)

Journals

- Journal of Machine Learning Research (MLJ)
- Machine Learning Journal (JMLR)
- Journal of Artificial Intelligence Research (JAIR)
- Artificial Intelligence Journal (AIJ)
- Pattern Analysis and Machine Intelligence (PAMI)

Things l've probably left out

- Venues related to applications
- Statistics venues
- Engineering \& Signal Processing Venues

What is Machine Learning

- Learning Element
- The thing that learns
- Performance Element
- Objective measure of progress
- Learning is simply an increase in the ability of the learning element over time to achieve the task specified by the performance element

ML vs. Statistics?

- Machine learning is:
- Younger
- More empirical
- More algorithmic
- (arguably) More practical
- (arguably) More decision theoretic
- Statistics is:
- More mature
- (arguably) More formal and rigorous

ML vs. Data Mining

- Machine Learning is:
- (Arguably) more formal
- (Arguably) more task driven/decision theoretic
- Data Mining is:
- More constrained by size of data set
- More closely tied to database techniques

Types of Learning

- Inductive Learning
- Acquiring new information that previously was not available
- Learning concepts
- Speedup learning
- Learning to do something you already "know" faster or better

Feedback in Learning

- Supervised Learning
- Given examples of correct behavior
- Unsupervised Learning
- No external notion of what is correct
- Is this well-defined?
- Reinforcement Learning
- Indirect indication of effectiveness

Learning Methodology

- Distinction between training and testing is crucial
- Correct performance on training set is just memorization!
- Researcher should never look at the test data
- Raises some troubling issues for "benchmark" learning problems

Computational Learning Theory

- Formal study of what can be learned from data
- Closely related to ML, but also to CS theory
- Assumptions:
- Training examples must be representative
- Algorithm needn't always work, but should scale well
- Goals:
- Algorithms that have a low error rate with high probability
- Good characterization of how performance scales

Example: Supervised Learning

- Classical framework
- Target concept, e.g., green
- Learner is presented with labeled instances
- True: Green cones, green cubes, green spheres
- False: Red cones, red cubes, red spheres, blue cones, blue cubes, blue spheres
- Learner must correctly identify the target concept from the training data

Performance Measure

- Training set won't have all possible objects
- Test set will contain novel objects
- Blue cylinders, yellow tetrahedra
- To learn successfully, learner must have good performance when confronted $w /$ novel objects
- This is what we would expect from people - A blue Broccolisaurus is still blue

Why Learning Is Tricky

- Suppose we have seen:
- Red tetrahedron(f), Blue sphere(t), Blue cone(t), green cube(f)
- Possible concepts:
- Blue
- (Blue Sphere) or (Blue Cone)
- Objects a prime number from start
- Objects with a circular cross-section
- What if some data are mislabeled?

Management of the Hypothesis Space

- Ockham's Razor:
- All things being equal, favor the simplest consistent hypothesis
- Guiding principle of science,e.g., Einstein: In my opinion the theory here is the logically simplest relativistic field theory that is at all possible. But this does not mean that nature might not obey a more complex theory. More complex theories have frequently been proposed.... In my view, such n
complicated systems and their combinations should be considered only if there exist physical-empirical reasons to do so.
- Ockham's razor is not provably correct, but
- Computational learning theory shows us that the more choices we have, the more data we need to distinguish reliably among these choices
- Well known trade off between bias and variance
- How many points do you need to fit a degree 2 polynomial?
- How many points do you need to fit a degree 100 polynomial?
- Ockham's razor is embodied in a wide range of methods

Learning and Representation

- Learning is very sensitive to representation
- Every learning algorithm can be viewed as a search through a space of concepts
- Space of concepts determines
- Difficulty of task
- Appropriate algorithm
- Restricting too aggressively can trivialize problem
- Failure to restrict (or regularize) can trivialize the problem
- Example Space: Conjunctions of colors and shapes
- Eliminates primes and (possibly) cross sections

How to Succeed with Machine Learning

- Theoretical/algorithmic success
- Maneuver through space of hypotheses efficiently
- Efficiency
- Make good use of data
- Make good use of time
- Practical Success
- Getting something to learn can be hard (my job!)
- Know your problem!
- Pick training data carefully
- Craft hypothesis space

