Introduction to Kernel Methods

Ron Parr
CPS 271

9/27/2007

Outline

Motivation for kernel methods
* The dual view

* What makes a kernel?

* The Gaussian Process view

* Review of why we care

* Classification

Parametric Methods

Methods discussed so far are parametric

Learning mechanism/representation is characterized by
a fixed set of parameters

— Regression coefficients

— Neural network weights

— Linear discriminant means and covariances

* Connection between data and output is complicated
and circuitous:

— First we pick an algorithm, then our features,

— Algorithm tunes parameters to data

— Data are discarded
* Final result is a function from data to predictions
* Is there a more direct route?

Non-Parametric Methods

« Traditionally the simplest methods
* Not discussed heavily in the book
* K-Nearest neighbor
— Classify according to nearest (in feature space) neighbor
— For k>1, vote
* Locally weighted regression
— Use query dependent regression weights
(rerun regression for every query)
— Weights decay with distance from query point
¢ lssues
— Defining closeness (both scale and dimensions)
— Efficiency
— Tendency to overfit w/o careful tweaking

But how different are these, really?

* Both are functions from data to predictions
* Non-parametric methods

— Seem more constrained

— Store less information

* Is there a unifying view?

Dual View of Regression

* Recall (regularized) regression minimizes:

J(w)=0.5iw"w +0.5i (W gy 1)

* Setting dJ/dw = 0:

w =%i(wwu‘”)—z“))w(x“))

i=l

Dual View Continued

N

W= —jlz(wr¢(x(:))7 10)7)(.!(“))

i=l

* Some notation:
“)) _jl(wrmxm)_tm)

o(x
o] 20 az| 7 VoG)=1)
(™) %(WT,p();“”’)—t(N’)

e Simplifying: w=®"a

9/27/2007

Substituting

2

J(w):0,5/1w7w+05i(w'¢(xm)—r”’)
w=0"a
J(a)= 0.5aTq>q>Tc1>q>Ta—aT<1>q>Tt+0.5t’t—§a’<b<b’a

Comment: This is a mess, but it makes the dependence on ®®T clearer

The Gram Matrix
* Define K= ®PT
J(@)=0.5a"®d " dP a—-a" dP"t+0.5t"t - %aTCIJCIDTa
= O.SaTKKa—aTKt+O.5tTt—%aTKa

* Setting dj/dato 0

a=(K+AD™'t

Prediction

* Recall that to predict a new value we use:
y(x) = w' g(x)
* Substituting:
w=®"a a=(K+AD)"t

y(0) =w'p(x)=a' PP(x)=k(x)" (K +A)"'t
—

Extension to the Gram matrix

Why this matters?

* We have expressed regression entirely in
terms of the gram matrix, K, which we call the
kernel

* But K is defined entirely of dot products
between vectors in our training set

* Let’s think about what K really means...

What does dot product mean?

* Elements of K are dot products between vectors, xTy

* If x=y, X"y is squared magnitude

* If x has norm 1, then x'y is projection of y onto x

* Ingeneral x'y/(| |x| | |]y]]) is the cosine between x and y

* If x and y have the same magnitude, then x"y is maximized
when x=y

9/27/2007

What happens if we redefine dot product?

* If we change the meaning of xy, then we
change what it means to two vectors to be
similar

* The big idea: Turn feature on its head

* Instead of invested effort in finding features,
invest effort in finding kernels

 Algorithmically equivalent to redefining the K
matrix

Kernel example

* The default (linear) kernel says k(x,y)= xTy
* What if k(x,y)=(x"y)? instead?
* Suppose x=(x1,x2), y=(y1, y2)

2

k(x,y)=x"y = (%, ¥, +x,3,)

=(x)'lz +2x %y + xzz}'zz) ZZ
5 T 1
X
= \/Exl X (ylz \/E)ﬁ Y2 Y22) ¢(Z) - \/EZI %
2
XZZ Z2

=¢(x)" 4(y)

T

What just happened?

* We just changed the feature space from linear
in x, to quadratic in x

* But we don't actually need to construct these
features; we just need to redefine K

* Question: Does every choice of K make sense?
(Does every K correspond to sensible basis?)

What makes a valid kernel?

* In general, we want our K matrix to be
symmetric, positive semidefinite (not proved
here)

* A sufficient (but not necessary) condition is for K
to behave like a distance metric

— Nonnegative

— K(x,x)=0

— Symmetric

— Obeys triangle inequality

* Fancy kernels can be constructed by combining
simple ones

Valid Kernel Combinations

k(x,x") = ck,(x,x")
kxx) = fOk X)) T
k(x,x')=q(k,(x,x' f(.) is any function
G x)=4(I(X x) q(.) is polynomial w/>=0 coefficients
k(x,x')= ek"x’x) ki is any valid kernel function
' ' ' x=(xa,xb)
k(x.x)=k1(X,X)+k2(X,X) A is symmetric and PSD
k(x,x") =k, (x,x")k,(x,x")
k(x,X") = k;(9(x),p(x"))
k(x,x')=x"Ax'
k(x,x")=k,(x,,x,")+k,(x,,X,")

ke(x,x') =k, (%, %, 'k, (%, %,)

Other Interesting Kernels
* Polynomial kernel:
k(x,x") = (x"x+c)"

* Gaussian Kernel:

b’

k(x,x)=e 20

9/27/2007

More Kernels

¢ Kernels over sets:

k(A, ATy =211
* Kernels from probabilities

k(x,x') = p(x) p(x')

Gaussian Process View

¢ Recall that regularized regression is equivalent
to the ML solution to Bayesian regression with
a mean 0 Gaussian prior on the weights

* In the dual view, we interpret our training data
as inducing a joint distribution over the y
targets

Gaussian Process Formulation

y =ow

* w is a vector of Gaussian rvs, soy is a vector of

Gaussian rvs

E(y)=®E(W)=0
cov(y)=E(yy") =PE(ww' @' = id)d)r =K
Notes: @
— Priorvarianceonw =
— We hid this in K

Noise model for targets

¢ Recall that we assume our targets values t, are
the result of an underlying y, corrupted with
Gaussian noise

p(yY)=N(yl0,K)
ptly)=N(@ly,)
p(tly)=N(tly,f"D

PO =[p(t1y)p(y)dy = N(t10,0)
C=K+p"1

Extending to Prediction

For prediction, we want

pty) =N(ty,10,Cy.))
We don’t need y to define Cn+1

Cy, k
CN+I = [k;’ C]

Where Cy is our previous C, k is the kernel

beween old (training) and new (xy,,) points, and ¢

= k(XN+1l XN+1)+B-1

Now we turn the magic crank

* All we need to do now is to condition on
previously observed target values to get

P(ty, 1t)
* Using the conditioning results from chapter 2:

Hxy,)=K'Cy Tt
o (xy,)=c—k'C, 'k

Compare with Regularized Regression

* Regularized regression with kernels:
y(x) =w'g(x)=a' @P(x) =k(x)" (K + A"t
* Gaussian process regression:

H(xy,)=k'Cy't
0’ (xy,)=c—k'C, 'k
¢ Recall:

C=K+1

9/27/2007

Advantages of the GP View

¢ Why bother with GP if regularized regression
does the same thing?

* GP also gives us a variance in prediction
* GP gives us a distribution over targets

* GPis more general, can incorporate other
types of priors, including priors over priors

Reality Check

* Cost of ordinary regression:
— Feature space of dimension k, N training points
— Storage of solution O(k)
— Computation:
¢ Cubicink
¢ linearinN

* Cost of kernel version:
— Feature space of dimension k, N training points
— Storage of solution O(N)
— Computation
* CubicinN,
* No explicit dependence on k

Why do we like Kernels?

* Let us experiment with feature spaces without
paying the cost of constructing the features

* But what about overfitting?
(Isn’t k>N dangerous?)

* Yes! This is why we need regularization!

* This issue becomes particularly interesting in the
context of support vector machines

Kernels for Classification

Idea 1:

— Use logistic regression, replacing x'w with some kind
of kernel regression
— Problem:
* No clean training algorithm
* Must use approximations

Idea 2: Support Vector Machines (next chapter)

Relationship to Neural Networks

* Assume:
— Linear output node
— Large number of hidden nodes
— Gaussian prior on weights

* Can show that in the limit of a large number
of hidden nodes, the above neural network
behaves like a Gaussian process

9/27/2007

Some Concluding Thoughts

Kernels and Gaussian processes have become very
popular in recent years

Why?

— Coolness factor

— Ability to work in weird spaces implicitly

Is this a good thing?

— Not a substitute for standard linear + good features

— Some advantages over other non-parametric methods

« Potential for elegant treatment of regularization
* GP provides probability distribution

— Kernels useful for classification and other techniques
beyond regression

