
9/27/2007

1

Introduction to Kernel Methods

Ron Parr

CPS 271

Outline

• Motivation for kernel methods

• The dual view

• What makes a kernel?

• The Gaussian Process view

• Review of why we care

• Classification

Parametric Methods

• Methods discussed so far are parametric

• Learning mechanism/representation is characterized by
a fixed set of parameters
– Regression coefficients

– Neural network weights

– Linear discriminant means and covariances

• Connection between data and output is complicated
and circuitous:
– First we pick an algorithm, then our features,

– Algorithm tunes parameters to data

– Data are discarded

• Final result is a function from data to predictions

• Is there a more direct route?

Non-Parametric Methods

• Traditionally the simplest methods

• Not discussed heavily in the book

• K-Nearest neighbor

– Classify according to nearest (in feature space) neighbor

– For k>1, vote

• Locally weighted regression
– Use query dependent regression weights

(rerun regression for every query)

– Weights decay with distance from query point

• Issues

– Defining closeness (both scale and dimensions)

– Efficiency

– Tendency to overfit w/o careful tweaking

But how different are these, really?

• Both are functions from data to predictions

• Non-parametric methods

– Seem more constrained

– Store less information

• Is there a unifying view?

Dual View of Regression

• Recall (regularized) regression minimizes:

• Setting dJ/dw = 0:

()
2

1

)()(
)(5.05.0)(∑

=

−+=
N

i

iiTT
txJ φλ wwww

())()(
1)(

1

)()(i
N

i

iiT
xtx φφ

λ
∑

=

−
−

= ww

9/27/2007

2

Dual View Continued

• Some notation:

• Simplifying:

())()(
1)(

1

)()(i
N

i

iiT
xtx φφ

λ
∑

=

−
−

= ww

=Φ

)(

)(

)(

)(

)2(

)1(

Nx

x

x

φ

φ

φ

M

()

()

()

−
−

−
−

−
−

=

)()(

)2()2(

)1()1(

)(
1

)(
1

)(
1

NNT

T

T

tx

tx

tx

φ
λ

φ
λ

φ
λ

w

w

w

a

M

aw TΦ=

Substituting

()
2

1

)()(
)(5.05.0)(∑

=

−+=
N

i

iiTT
txJ φλ wwww

aw TΦ=

aatttaaaa
TTTTTTTT

J ΦΦ−+ΦΦ−ΦΦΦΦ=
2

5.05.0)(
λ

Comment: This is a mess, but it makes the dependence on ΦΦT clearer

The Gram Matrix

• Define K = ΦΦT

• Setting dj/da to 0

aatttaaa

aatttaaaa

KKKK

J

TTTT

TTTTTTTT

2
5.05.0

2
5.05.0)(

λ

λ

−+−=

ΦΦ−+ΦΦ−ΦΦΦΦ=

ta 1
)(

−+= IK λ

Prediction

• Recall that to predict a new value we use:

• Substituting:

)()(xxy Tφw=

aw
TΦ= ta 1

)(
−+= IK λ

taw 1
)()()()()(

−+=Φ== IKxkxxxy TTT λφφ

Extension to the Gram matrix

Why this matters?

• We have expressed regression entirely in

terms of the gram matrix, K, which we call the

kernel

• But K is defined entirely of dot products

between vectors in our training set

• Let’s think about what K really means…

What does dot product mean?

• Elements of K are dot products between vectors, xTy

• If x=y, xTy is squared magnitude

• If x has norm 1, then xTy is projection of y onto x

• In general xTy/(||x||||y||) is the cosine between x and y

• If x and y have the same magnitude, then xTy is maximized
when x=y

9/27/2007

3

What happens if we redefine dot product?

• If we change the meaning of xTy, then we
change what it means to two vectors to be
similar

• The big idea: Turn feature on its head

• Instead of invested effort in finding features,
invest effort in finding kernels

• Algorithmically equivalent to redefining the K
matrix

Kernel example

• The default (linear) kernel says k(x,y)= xTy

• What if k(x,y)=(xTy)2 instead?

• Suppose x=(x1,x2), y=(y1, y2)

()

)()(

22

)2(

)()(

2

221

2

1

2

2

21

2

1

2

2

2

21111

2

1

2

1

2

2211

yx

yxyx,

φφ T

T

T

yyyy

x

xx

x

yxyxyxyx

yxyxk

=

=

++=

+==

T

z

zz

z

=
2

2

21

2

1

2)(zφ

What just happened?

• We just changed the feature space from linear

in x, to quadratic in x

• But we don’t actually need to construct these

features; we just need to redefine K

• Question: Does every choice of K make sense?

(Does every K correspond to sensible basis?)

What makes a valid kernel?

• In general, we want our K matrix to be
symmetric, positive semidefinite (not proved
here)

• A sufficient (but not necessary) condition is for K
to behave like a distance metric
– Nonnegative

– K(x,x)=0

– Symmetric

– Obeys triangle inequality

• Fancy kernels can be constructed by combining
simple ones

Valid Kernel Combinations

)',()',()',(

)',()',()',(

')',(

))'(),(()',(

)',()',()',(

)',()',()',(

)',(

))',(()',(

)'()',()()',(

)',()',(

3

21

21

)',(

1

1

1

1

bbbaaa

bbbaaa

T

k

kkk

kkk

k

kk

kkk

kkk

ek

kqk

fkfk

ckk

xxxxxx

xxxxxx

Axxxx

xxxx

xxxxxx

xxxxxx

xx

xxxx

xxxxxx

xxxx

xx

=

+=

=

=

=

+=

=

=

=

=

φφ

Assumptions:

c>0

f(.) is any function

q(.) is polynomial w/>=0 coefficients

ki is any valid kernel function

x=(xa,xb)

A is symmetric and PSD

Other Interesting Kernels

• Polynomial kernel:

• Gaussian Kernel:

2

2

2

'

)',(σ

xx

xx

−
−

= ek

MT
ck)'()',(+= xxxx

9/27/2007

4

More Kernels

• Kernels over sets:

• Kernels from probabilities

'
2)',(

AA
AAk

I
=

)'()()',(xxxx ppk =

Gaussian Process View

• Recall that regularized regression is equivalent

to the ML solution to Bayesian regression with

a mean 0 Gaussian prior on the weights

• In the dual view, we interpret our training data

as inducing a joint distribution over the y

targets

Gaussian Process Formulation

• w is a vector of Gaussian rvs, so y is a vector of
Gaussian rvs

• Notes:
– Prior variance on w = α
– We hid this in K

wy Φ=

KEE

EE

TTTT =ΦΦ=ΦΦ==

=Φ=

α

1
)()()cov(

0)()(

wwyyy

wy

Noise model for targets

• Recall that we assume our targets values t, are

the result of an underlying y, corrupted with

Gaussian noise

IK

tyyytt

Iytyt

Kyy

1

1

1

),0|()()|()(

),|()|(

),|()|(

),0|()(

−

−

−

+=

==

=

=

=

∫
β

β

β

C

CNdppp

Np

ytNytp

Np

Extending to Prediction

• For prediction, we want

• We don’t need y to define Cn+1

• Where CN is our previous C, k is the kernel
beween old (training) and new (xN+1) points, and c
= k(xN+1, xN+1)+β-1

),0|()(111 +++ = NNN CNp tt

=+

ck

kC
C

T

N

N 1

Now we turn the magic crank

• All we need to do now is to condition on

previously observed target values to get

• Using the conditioning results from chapter 2:

)|(1 t+NtP

kk

tk

1

1

2

1

1

)(

)(

−

+

−

+

−=

=

N

T

N

N

T

N

Ccx

Cx

σ

µ

9/27/2007

5

Compare with Regularized Regression

• Regularized regression with kernels:

• Gaussian process regression:

• Recall:

taw 1
)()()()()(

−+=Φ== IKxkxxxy TTT λφφ

kk

tk

1

1

2

1

1

)(

)(

−

+

−

+

−=

=

N

T

N

N

T

N

Ccx

Cx

σ

µ

IK 1−+= βC

Advantages of the GP View

• Why bother with GP if regularized regression

does the same thing?

• GP also gives us a variance in prediction

• GP gives us a distribution over targets

• GP is more general, can incorporate other

types of priors, including priors over priors

Reality Check

• Cost of ordinary regression:
– Feature space of dimension k, N training points

– Storage of solution O(k)

– Computation:
• Cubic in k

• linear in N

• Cost of kernel version:
– Feature space of dimension k, N training points

– Storage of solution O(N)

– Computation
• Cubic in N,

• No explicit dependence on k

Why do we like Kernels?

• Let us experiment with feature spaces without
paying the cost of constructing the features

• But what about overfitting?
(Isn’t k>N dangerous?)

• Yes! This is why we need regularization!

• This issue becomes particularly interesting in the
context of support vector machines

Kernels for Classification

• Idea 1:

– Use logistic regression, replacing xTw with some kind

of kernel regression

– Problem:

• No clean training algorithm

• Must use approximations

• Idea 2: Support Vector Machines (next chapter)

Relationship to Neural Networks

• Assume:

– Linear output node

– Large number of hidden nodes

– Gaussian prior on weights

• Can show that in the limit of a large number

of hidden nodes, the above neural network

behaves like a Gaussian process

9/27/2007

6

Some Concluding Thoughts

• Kernels and Gaussian processes have become very
popular in recent years

• Why?
– Coolness factor

– Ability to work in weird spaces implicitly

• Is this a good thing?
– Not a substitute for standard linear + good features

– Some advantages over other non-parametric methods
• Potential for elegant treatment of regularization

• GP provides probability distribution

– Kernels useful for classification and other techniques
beyond regression

