
9/27/2007

1

Introduction to Kernel Methods

Ron Parr

CPS 271

Outline

• Motivation for kernel methods

• The dual view

• What makes a kernel?

• The Gaussian Process view

• Review of why we care

• Classification

Parametric Methods

• Methods discussed so far are parametric

• Learning mechanism/representation is characterized by 
a fixed set of parameters
– Regression coefficients

– Neural network weights

– Linear discriminant means and covariances

• Connection between data and output is complicated 
and circuitous:
– First we pick an algorithm, then our features,

– Algorithm tunes parameters to data

– Data are discarded

• Final result is a function from data to predictions

• Is there a more direct route?

Non-Parametric Methods

• Traditionally the simplest methods

• Not discussed heavily in the book

• K-Nearest neighbor

– Classify according to nearest (in feature space) neighbor

– For k>1, vote

• Locally weighted regression
– Use query dependent regression weights

(rerun regression for every query)

– Weights decay with distance from query point

• Issues

– Defining closeness (both scale and dimensions)

– Efficiency

– Tendency to overfit w/o careful tweaking

But how different are these, really?

• Both are functions from data to predictions

• Non-parametric methods

– Seem more constrained

– Store less information

• Is there a unifying view?

Dual View of Regression

• Recall (regularized) regression minimizes:

• Setting dJ/dw = 0:
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Dual View Continued

• Some notation:

• Simplifying:
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Substituting
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Comment:  This is a mess, but it makes the dependence on ΦΦT clearer

The Gram Matrix

• Define K = ΦΦT

• Setting dj/da to 0 

aatttaaa

aatttaaaa

KKKK

J

TTTT

TTTTTTTT

2
5.05.0

2
5.05.0)(

λ

λ

−+−=

ΦΦ−+ΦΦ−ΦΦΦΦ=

ta 1
)(

−+= IK λ

Prediction

• Recall that to predict a new value we use:

• Substituting:  
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Extension to the Gram matrix

Why this matters?

• We have expressed regression entirely in 

terms of the gram matrix, K, which we call the 

kernel

• But K is defined entirely of dot products 

between vectors in our training set

• Let’s think about what K really means…

What does dot product mean?

• Elements of K are dot products between vectors, xTy

• If x=y, xTy is squared magnitude

• If x has norm 1, then xTy is projection of y onto x

• In general xTy/(||x||||y||) is the cosine between x and y

• If x and y have the same magnitude, then xTy is maximized 
when x=y
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What happens if we redefine dot product?

• If we change the meaning of xTy, then we 
change what it means to two vectors to be 
similar

• The big idea:  Turn feature on its head

• Instead of invested effort in finding features, 
invest effort in finding kernels

• Algorithmically equivalent to redefining the K 
matrix

Kernel example

• The default (linear) kernel says k(x,y)= xTy

• What if k(x,y)=(xTy)2 instead?

• Suppose x=(x1,x2), y=(y1, y2)
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What just happened?

• We just changed the feature space from linear 

in x, to quadratic in x

• But we don’t actually need to construct these 

features; we just need to redefine K

• Question:  Does every choice of K make sense?  

(Does every K correspond to sensible basis?)

What makes a valid kernel?

• In general, we want our K matrix to be 
symmetric, positive semidefinite (not proved 
here)

• A sufficient (but not necessary) condition is for K 
to behave like a distance metric
– Nonnegative

– K(x,x)=0

– Symmetric

– Obeys triangle inequality

• Fancy kernels can be constructed by combining 
simple ones

Valid Kernel Combinations
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Assumptions:  

c>0

f(.) is any function

q(.) is polynomial w/>=0 coefficients

ki is any valid kernel function

x=(xa,xb)

A is symmetric and PSD

Other Interesting Kernels

• Polynomial kernel:

• Gaussian Kernel:
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More Kernels

• Kernels over sets:

• Kernels from probabilities
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Gaussian Process View

• Recall that regularized regression is equivalent 

to the ML solution to Bayesian regression with 

a mean 0 Gaussian prior on the weights

• In the dual view, we interpret our training data 

as inducing a joint distribution over the y 

targets

Gaussian Process Formulation

• w is a vector of Gaussian rvs, so y is a vector of 
Gaussian rvs

• Notes:
– Prior variance on w = α
– We hid this in K
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Noise model for targets

• Recall that we assume our targets values t, are 

the result of an underlying y, corrupted with 

Gaussian noise
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Extending to Prediction

• For prediction, we want

• We don’t need y to define Cn+1

• Where CN is our previous C, k is the kernel 
beween old (training) and new (xN+1) points, and c 
= k(xN+1, xN+1)+β-1
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Now we turn the magic crank

• All we need to do now is to condition on 

previously observed target values to get

• Using the conditioning results from chapter 2:
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Compare with Regularized Regression

• Regularized regression with kernels:

• Gaussian process regression:

• Recall:
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Advantages of the GP View

• Why bother with GP if regularized regression 

does the same thing?

• GP also gives us a variance in prediction

• GP gives us a distribution over targets

• GP is more general, can incorporate other 

types of priors, including priors over priors

Reality Check

• Cost of ordinary regression:
– Feature space of dimension k, N training points

– Storage of solution O(k)

– Computation:
• Cubic in k

• linear in N

• Cost of kernel version:
– Feature space of dimension k, N training points

– Storage of solution O(N)

– Computation
• Cubic in N, 

• No explicit dependence on k

Why do we like Kernels?

• Let us experiment with feature spaces without 
paying the cost of constructing the features

• But what about overfitting?
(Isn’t k>N dangerous?)

• Yes!  This is why we need regularization!

• This issue becomes particularly interesting in the 
context of support vector machines

Kernels for Classification

• Idea 1:

– Use logistic regression, replacing xTw with some kind 

of kernel regression

– Problem:

• No clean training algorithm

• Must use approximations

• Idea 2:  Support Vector Machines (next chapter)

Relationship to Neural Networks

• Assume:

– Linear output node

– Large number of hidden nodes

– Gaussian prior on weights

• Can show that in the limit of a large number 

of hidden nodes, the above neural network 

behaves like a Gaussian process
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Some Concluding Thoughts

• Kernels and Gaussian processes have become very
popular in recent years

• Why?
– Coolness factor

– Ability to work in weird spaces implicitly

• Is this a good thing?
– Not a substitute for standard linear + good features

– Some advantages over other non-parametric methods
• Potential for elegant treatment of regularization

• GP provides probability distribution

– Kernels useful for classification and other techniques 
beyond regression


