
�

Linear Classification

Ron Parr

CPS 271

With content adapted from Andrew Ng, Lise Getoor, and Tom Dietterich

Figures from textbook courtesy of Chris Bishop and © Chris Bishop

Classification

• Supervised learning framework

• Features can be anything

• Targets are discrete classes:

– Safe mushrooms vs. poisonous

– Malignant vs. benign

– Good credit risk vs. bad

• Can we treat classes as numbers?

– Single class?

– Multi class?

Representing Classes

• Interpret t(i) as the probability that the ith element

is in a particular class

• Classes usually disjoint

• For multiclass, t(i) is a vector

• t(i)[j]=t(i)
j=1 if ith element is in class j, 0 OTW

• Notation: For convenience, we will sometimes

refer to the “raw” variables x, rather than the

features as seen through the lens of our features, φφφφ

What is a Linear Disciminant?
• Simplest kind of classifer, a linear threshold unit (LTU):



 ≥++

=
otherwise

wwxwif
y

nn

0

1
)(

011 θL
x

• We sometimes assume w0=1, so y(x)=wTx

• A linear discriminant is an n-1 dimensional hyperplane

• w is orthogonal to this

• We’ll look at three algorithms, all of which learn linear decision

boundaries:

– Directly learn the LTU: Using Least Mean Square (LMS) algorithm

– Learn the conditional distribution: Logistic regression

– Learn the joint distribution: Linear discriminant analysis (LDA)

Decision Boundaries

• A classifier can be viewed as partitioning the input space or feature
space X into decision regions

1

1

1
1

1

0

0 0
0

0

0

0

x1

x2

• A linear threshold unit always produces a linear decision boundary. A
set of points that can be separated by a linear decision boundary is
linearly separable.

What can be expressed?

• Examples of things that can be expressed
(Assume n boolean (0/1 features)

– Conjunctions:
• x1^x3^x4 : 1⋅x1 + 0⋅x2 +1⋅x3 + 1⋅x4 ≥ 3

• x1^¬x3^x4: 1⋅x1 + 0⋅x2 +-1⋅x3 + 1⋅x4 ≥ 2

– at-least-m-of-n
• at-least-2-of(x1,x2,x4)

• 1⋅x1 + 1⋅x2 + 0⋅x3 + 1⋅x4 ≥ 2

• Examples of things that cannot be expressed:
– Non-trivial disjunctions:

• (x1^x3) + (x3^x4)

– Exclusive-Or
• (x1^¬x2) + (¬x1^x2)

�

Non-linearly separable example

1

1

0

0

x1

x2

Multiclass

• k classes

• O(k2) one vs. one classifiers

– Expensive

– May not be consistent

• k-1 one vs. rest classifiers

– Less expensive

– Still may not be consistent

• K linear functions

– Assign x to class j if wj
Tx> wi

Tx for all i

– Gives convex, singly connected decision regions

– How to pick the linear functions?

Why not use regression?

• Regression minimizes sum of squared

errors on target function

• Gives strong influence to outliers

������� � �����	 	��	�

�������
 ���

�����
 �	� �� ������
���
The “Neural” Story (Part I)

• Nice to justify machine learning w/nature

• Naïve introspection works badly

• Neural model biologically plausible

• Single neuron, linear threshold unit = perceptron

• (Longer rant on this later…)

Perceptron

node/

neuron

xj wj

Y

f

f is a simple step function (sgn)

Perceptron Learning

• We are given a set of inputs x(1)…x(n)

• t(1)…t(n) is a set of target outputs (boolean) {-1,1}

• w is our set of weights

• output of perceptron = wTx

• Perceptron_error(x(i), w) = -net(x(i),w) t(i)

• Goal: Pick w to optimize:

∑
∈ iedmisclassif

)(),(_min
i

i
errorperceptron wx

w

�

��������	
�

)()(

iedmisclassif
: ii

jjj
ji

txww α+←∀∀
∈

������ ����� �����	�����
 ����	���� ��������� �� ��� ���
������ � ���	���
 ���	
�����
� � ���	���
 ���	 ���!�
!���
""���	��#���# ����#���"����"$�	����	��"�� %&#!���
Perceptron Learning Properties

(LTU Properties)

• Good news:

– If there exists a set of weights that will correctly

classify every example, the perceptron learning rule

will find it

– Does not depend on step size

• Bad news:

– Perceptrons can represent only a small class of

functions, “linearly separable,” functions

– May oscillate if not separable

– No obvious generalization for multiclass

Logistic Regression

• In logistic regression, we learn the conditional distribution P(t|x)

• Let pt(x; w) be our estimate of P(t|x), where w is a vector of

adjustable parameters.

• Assume there are two classes, t = 0 and t = 1 and

()
xw

xw

wx
T

T

e

e
p

+
=

1
;1

() ()wxwx ;1; 10 pp −=

• This is equivalent to

• IOW, the log odds of class 1 is a linear function of x

()
()

xw
wx

wx T

p

p
=

;

;
log

0

1

Why this form?

• One reason: transforms a linear function in the range (-∞,+∞) to be

positive and sum to 1 so that it can represent a probability

0.0

0.0-10.0 10.0

xw

xw

T

T

e

e

+1

1.0

Constructing a Learning Algorithm

• Find the probability distribution h that is most likely, given the data.

)(

)()|(
maxarg)|(maxarg

XP

hPhXP
XhP ww

h
w

h ww

= by Bayes’ Rule

)()|(maxarg ww
h

hPhXP
w

= because P(X) doesn’t depend on h

)|(maxarg w
h

hXP
w

= if we assume P(h) is uniform

)|(logmaxarg w
h

hXP
w

= because log is monotone

• The likelihood function views P(X|hw) as a function of the parameters in the

model. In this case, our parameters are the weights, w.

L(w;X) = P(X|hw)

• The log likelihood is a commonly used objective function for learning
algorithms. It is denoted l(w;X)

• The w that maximizes the likelihood of the training data is called the

maximum likelihood estimator

Log Likelihood for Conditional

Probability Estimators

• We can express the log likelihood in a compact from called the cross-entropy

• Take an example (x(i),t(i))

– if y(i) = 0, the log likelihood is log(1-p1(x; w))

– if y(i) = 1, the log likelihood is log p1(x; θ)

• These two are mutually exclusive, so we can combine them to get:

[]);(log);(1log)1(),|(log),;()(

1

)()(

1

)()()()(
wxwxwxxw

iiiiiii ptpttPt +−−==l

• The goal of our learning algorithm will be to find w to maximize:

),;()(tXww l=J

�

Computing the Gradient

),;(
)()()(i

i

i

jj

t
J

x
ww

w

∑
∂

∂
=

∂

∂
θl

[]));(log);(1log)1(();;(
)(

1

)()(

1

)()()(
wxwx

w
xw

w

iiii

j

ii

j

ptptt +−−
∂

∂
=

∂

∂
l















∂

∂
+













∂

∂
−−=

−
j

i

p

i

j

i

p

i p
t

p
t ii

w

wx

w

wx

wxwx

);();(
)1(

)(

1

);(

1)(
)(

1

);(1

1
)(

1
)(

1

[]














∂

∂
−=

−

−

j

i

p

t

p

t
p

i

i

i

i

w

wx

wxwx

);(
)(

1

);(1

)1(

);()(
1

)(

)(
1

)(

[]














∂

∂
=

−

−−−

j

i

pp

ptpt p
ii

iiii

w

wx

wxwx

wxwx);(
)(

1

));(1)(;(

);()1());(1(
)(

1
)(

1

)(
1

)()(
1

)(

[]














∂

∂
=

−

−

j

i

pp

pt p
ii

ii

w

wx

wxwx

wx);(
)(

1

));(1)(;(

);(
)(

1
)(

1

)(
1

)(

Gradient cont.

)(

1

1
);(

)(

1 iT

e
p

i

xw
wx

−+
=

=
∂

∂

j

i
p

w

wx);(
)(

1

• Another way of writing the logistic regression function is:

)(
)1(

1)(

2

)(

)(

iT

j

iT

iT
e

e
xw

w

xw

xw
−

∂

∂

+
= −

−

)(
)1(

1)(

2)(j
i

xe
e

iT

iT
−

+
= −

−

xw

xw

• So we get:

j
iii

xpp
)()(

1

)(

1));(1)(;(wxwx −=

)1(
)1(

1)(

)(2

iT

iT
e

e j

xw

xw w

−

−
+

∂

∂

+

Gradient cont.

• The gradient of the loglikelihood for a single point is:

• The overall gradient is:

),;()()(ii

j

txw
w

l
∂

∂ []














∂

∂
=

−

−

j

i

pp

pt p
ii

ii

w

wx

wxwx

wx);()(

1

));(1)(;(

);(
)(

1
)(

1

)(
1

)(

[] j
iii

pp

pt
xppii

ii
)()(

1

)(

1));(1)(;(

);(
));(1)(;()(

1
)(

1

)(
1

)(

wxwx
wxwx

wx
−=

−

−

j
iii

xpt)()(

1

)());((wx−=

∑ −=
∂

∂

i

j
iii

j

xpt
J)(

1

)(
));((

)(
wx

w

w

Compare w/percepton rule!

Summary of Logistic Regression

• Learns the Conditional Probability Distribution P(t|x)

• No closed form solution

• Very simple expression for gradient

– Solve by local search:

• Begins with initial weight vector.

• Gradient ascent to maximize objective function.

• Objective function is the log likelihood of the data

• Algorithm seeks the probability distribution P(t|x) that is most
likely given the data.

• May be done online or in batch

• Can be used with acceleration methods (Newton-
Raphson, etc.)

What We Already Know

• Linear Threshold Unit (LTU)

– Tries to discover a linear function (in feature

space) that separates positive and negative

examples

• Logistic Regression

– Uses regression to estimate the function

()
()

xw
wx

wx T

p

p
=

;

;
log

0

1

Density Estimation

• Basic unsupervised learning technique

• Discussed here in context of classification

• Idea: Estimate joint probability of features and

class labels

�

Discrete Case

• Suppose we know P(X1…XnT)

• How do we get this?

• Maximum likelihood estimate comes from

counting (relative frequency)

• Bernouli distribution

• We see a new x1…xn

• What is our guess for t?

Betting on y

• Assuming:

– Binary loss function

– Choices: t0, t1

• Favor t0 when P(t0|x1…xn) > P(t1|x1…xn)

• Use definition of conditional probability:

)...(

)...0(
)...|0(

1

1
1

n

n
n

xxP

xxtP
xxtP =

So, are we done???

• How many parameters needed for joint?

• Is this practical?

• Simplification (Naïve Bayes):

)|()|...(1 tXPtXXP i

i

n ∏=

Q: How is this more practical?

Naïve Bayes in Action

• Spam filtering

• X1…Xn: Spam related features

• t: Spam label

• Combine Bayes Rule w/Naïve Bayes:

)...(

)()|(

)...(

)()|...(
)...|(

1

1

1
1

n

i

i

n

n
n

XXP

tPtXP

XXP

tPtXXP
XXtP

∏
=

=

Things to note:

Do we worry about P(X1…Xn)?

Influence of P(t)?

Is Naïve Bayes Reasonable?

• Are features correlated within classes?

• How would it hurt us if they were?

• More on this when we discuss Bayesian

networks

Linear Discriminant Analysis

• In LDA, we learn the distribution P(x|t)

• We assume that x is continuous

• We assume P(x|t) is distributed according to a

multivariate normal distribution and P(t) is a discrete

distribution

�

Estimating the MVG parameters

• Given a set of data points {x1,…, xN}, the maximum likelihood

estimates for the parameters of the MVG are:

∑=
i

i

N

)(1
ˆ xµ

T

iN
)ˆx)(ˆx(

1ˆ (i)(i) µµ −−=Σ ∑

Putting it all together in LDA

• Also called Gaussian Discriminant Analysis

• Here

– t ∼ Bernoulli(w)

– x|t=0 ∼ Ν(µ1, Σ)

– x|t=1 ∼ Ν(µ2, Σ)

• Writing this out, we get:

()
() ()





−Σ−−== −

Σ 0

1

02

1

2

1
exp)0|(2/12/

µµ
π

xxtxp
T

n

()
() ()





−Σ−−== −

Σ 1

1

12

1

2

1
exp)1|(2/12/

µµ
π

xxtxp
T

n

Picking A Class

• We again use Bayes rule:

)(

)()|(
)|(

XP

tPtXP
XtP =

Posterior

label probability

MVG conditional

feature probability

Prior class

probability

Prior feature

probability (ignored)

The Beauty of Homoscedasticity

• Recall we assumed Σ same for all classes

• When is P(y0|x)>P(y1|x)???

()
() ()

()
() ())1(

2

1
exp

)0(
2

1
exp

1

1

12

1

0

1

02

1

2/12/

2/12/

ypxx

ypxx

T

T

n

n







−Σ−−

>





−Σ−−

−

Σ

−

Σ

µµ

µµ

π

π

() () () () kxxxx
TT

+−Σ−>−Σ− −−
1

1

10

1

0 µµµµ

Linear!!!

Example

−2 −1 0 1 2 3 4 5 6 7
−7

−6

−5

−4

−3

−2

−1

0

1

The decision boundary is at p(y=1|x) = 0.5

Homoscedastic LDA Discussion

• For multiclass, this gives convex decision

boundaries

• Satisfies desiderata for multiclass decision

boundaries

• How realistic is this?

• What do we give up?

�

Heteroscedastic Distributions

'())*+,-. *-,/01+ 23()) 41,01)5 ,- 67,) 89(+438:
Comparing LTU, LR, LDA

• Big debate about the relative merits of

– direct classifiers (like LTU) versus

– conditional models (like LR) versus

– generative models (like LDA)

LDA vs LR

• What is the relationship?

– In LDA, it turns out the p(t|x) can be expressed as a logistic function
where the weights are some function of µ1, µ2, and Σ!

– But, the converse is NOT true. If p(t|x) is a logistic function, that does
not imply p(x|t) is MVG

• LDA makes stronger modeling assumptions than LR

– when these modeling assumptions are correct, LDA will perform better

• LDA is asymptotically efficient: in the limit of very large training sets, there is
no algorithm that is strictly better than LDA

– however, when these assumptions are incorrect, LR is more robust

• weaker assumptions, more robust to deviations from modeling assumptions

• if the data are non-Gaussian, then in the limit, logistic outperforms LDA

• For this reason, LR is a more commonly used algorithm

Issues

• Statistical efficiency: if the generative model is correct, then it usually
gives better accuracy, especially for small training sets.

• Computational efficiency: generative models typically are the easiest
to compute. In LDA, we estimated the parameters directly, no need
for gradient ascent

• Robustness to changing loss function: Both generative and
conditional models allow the loss function to change without re-
estimating the model. This is not true for direct LTU methods

• Robustness to model assumptions: The generative model usually
performs poorly when the assumptions are violated.

• Robustness to missing values and noise: In many applications, some
of the features x(i)

j may be missing or corrupted for some training
examples. Generative models provide better ways of handling this
than non-generative models.

