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Classification

• Supervised learning framework

• Features can be anything

• Targets are discrete classes:

– Safe mushrooms vs. poisonous

– Malignant vs. benign

– Good credit risk vs. bad

• Can we treat classes as numbers?

– Single class?

– Multi class?

Representing Classes

• Interpret t(i) as the probability that the ith element 

is in a particular class

• Classes usually disjoint

• For multiclass, t(i) is a vector

• t(i)[j]=t(i)
j=1 if ith element is in class j, 0 OTW

• Notation:  For convenience, we will sometimes 

refer to the “raw” variables x, rather than the 

features as seen through the lens of our features, φφφφ

What is a Linear Disciminant?
• Simplest kind of classifer, a linear threshold unit (LTU):
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• We sometimes assume w0=1, so y(x)=wTx

• A linear discriminant is an n-1 dimensional hyperplane

• w is orthogonal to this

• We’ll look at three algorithms, all of which learn linear decision 

boundaries:

– Directly learn the LTU: Using Least Mean Square (LMS) algorithm

– Learn the conditional distribution: Logistic regression

– Learn the joint distribution: Linear discriminant analysis (LDA)

Decision Boundaries

• A classifier can be viewed as partitioning the input space or feature 
space X into decision regions
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• A linear threshold unit always produces a linear decision boundary.  A 
set of points that can be separated by a linear decision boundary is
linearly separable. 

What can be expressed?

• Examples of things that can be expressed
(Assume n boolean (0/1 features)

– Conjunctions: 
• x1^x3^x4 :   1⋅x1 + 0⋅x2 +1⋅x3  + 1⋅x4 ≥ 3

• x1^¬x3^x4:  1⋅x1 + 0⋅x2 +-1⋅x3  + 1⋅x4 ≥ 2

– at-least-m-of-n
• at-least-2-of(x1,x2,x4)

• 1⋅x1 + 1⋅x2 + 0⋅x3  + 1⋅x4 ≥ 2

• Examples of things that cannot be expressed:
– Non-trivial disjunctions:

• (x1^x3) + (x3^x4)

– Exclusive-Or
• (x1^¬x2) + (¬x1^x2)
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Non-linearly separable example
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Multiclass

• k classes

• O(k2) one vs. one classifiers

– Expensive

– May not be consistent

• k-1 one vs. rest classifiers

– Less expensive

– Still may not be consistent

• K linear functions

– Assign x to class j if wj
Tx> wi

Tx for all i

– Gives convex, singly connected decision regions

– How to pick the linear functions?

Why not use regression?

• Regression minimizes sum of squared 

errors on target function

• Gives strong influence to outliers
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The “Neural” Story (Part I)

• Nice to justify machine learning w/nature

• Naïve introspection works badly

• Neural model biologically plausible

• Single neuron, linear threshold unit = perceptron

• (Longer rant on this later…)

Perceptron

node/

neuron

xj wj

Y

f

f is a simple step function (sgn)

Perceptron Learning

• We are given a set of inputs x(1)…x(n)

• t(1)…t(n) is a set of target outputs (boolean) {-1,1}

• w is our set of weights

• output of perceptron = wTx

• Perceptron_error(x(i), w) = -net(x(i),w) t(i)

• Goal:  Pick w to optimize:
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Perceptron Learning Properties

(LTU Properties)

• Good news:

– If there exists a set of weights that will correctly 

classify every example, the perceptron learning rule 

will find it

– Does not depend on step size

• Bad news:

– Perceptrons can represent only a small class of 

functions, “linearly separable,” functions

– May oscillate if not separable

– No obvious generalization for multiclass

Logistic Regression

• In logistic regression, we learn the conditional distribution P(t|x)

• Let pt(x; w) be our estimate of P(t|x), where w is a vector of 

adjustable parameters.  

• Assume there are two classes, t = 0 and t = 1 and
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• This is equivalent to

• IOW, the log odds of class 1 is a linear function of x

( )
( )

xw
wx

wx T

p

p
=

;

;
log

0

1

Why this form?

• One reason: transforms a linear function in the range (-∞,+∞) to be 

positive and sum to 1 so that it can represent a probability
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Constructing a Learning Algorithm

• Find the probability distribution h that is most likely, given the data.  
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= because log is monotone

• The likelihood function views P(X|hw) as a function of the parameters in the 

model.  In this case, our parameters are the weights, w.

L(w;X) = P(X|hw)    

• The log likelihood is a commonly used objective function for learning 
algorithms.  It is denoted l(w;X)

• The w that maximizes the likelihood of the training data is called the 

maximum likelihood estimator

Log Likelihood for Conditional 

Probability Estimators

• We can express the log likelihood in a compact from called the cross-entropy

• Take an example (x(i),t(i))

– if y(i) = 0, the log likelihood is log(1-p1(x; w))

– if y(i) = 1, the log likelihood is log p1(x; θ)

• These two are mutually exclusive, so we can combine them to get:
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• The goal of our learning algorithm will be to find w to maximize:
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Computing the Gradient
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Gradient cont.
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• Another way of writing the logistic regression function is:
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Gradient cont.

• The gradient of the loglikelihood for a single point is:

• The overall gradient is:
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Compare w/percepton rule!

Summary of Logistic Regression

• Learns the Conditional Probability Distribution P(t|x)

• No closed form solution

• Very simple expression for gradient

– Solve by local search:

• Begins with initial weight vector.

• Gradient ascent to maximize objective function.

• Objective function is the log likelihood of the data

• Algorithm seeks the probability distribution P(t|x) that is most 
likely given the data.

• May be done online or in batch

• Can be used with acceleration methods (Newton-
Raphson, etc.)

What We Already Know

• Linear Threshold Unit (LTU)

– Tries to discover a linear function (in feature 

space) that separates positive and negative 

examples

• Logistic Regression

– Uses regression to estimate the function
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Density Estimation

• Basic unsupervised learning technique

• Discussed here in context of classification

• Idea:  Estimate joint probability of features and 

class labels
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Discrete Case

• Suppose we know P(X1…XnT)

• How do we get this?

• Maximum likelihood estimate comes from 

counting (relative frequency)

• Bernouli distribution

• We see a new x1…xn

• What is our guess for t?

Betting on y

• Assuming:

– Binary loss function

– Choices:  t0, t1

• Favor t0 when P(t0|x1…xn) > P(t1|x1…xn)

• Use definition of conditional probability:
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So, are we done???

• How many parameters needed for joint?

• Is this practical?

• Simplification (Naïve Bayes):

)|()|...( 1 tXPtXXP i

i

n ∏=

Q:  How is this more practical?

Naïve Bayes in Action

• Spam filtering

• X1…Xn:  Spam related features

• t:  Spam label

• Combine Bayes Rule w/Naïve Bayes:
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Things to note:

Do we worry about P(X1…Xn)?

Influence of P(t)?

Is Naïve Bayes Reasonable?

• Are features correlated within classes?

• How would it hurt us if they were?

• More on this when we discuss Bayesian 

networks

Linear Discriminant Analysis

• In LDA, we learn the distribution P(x|t)

• We assume that x is continuous

• We assume P(x|t) is distributed  according to a 

multivariate normal distribution and P(t) is a discrete 

distribution
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Estimating the MVG parameters

• Given a set of data points {x1,…, xN}, the maximum likelihood 

estimates for the parameters of the MVG are:
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Putting it all together in LDA

• Also called Gaussian Discriminant Analysis

• Here

– t ∼ Bernoulli(w)

– x|t=0 ∼ Ν(µ1, Σ)

– x|t=1 ∼ Ν(µ2, Σ)

• Writing this out, we get:

( )
( ) ( )





−Σ−−== −

Σ 0

1

02

1

2

1
exp)0|( 2/12/

µµ
π

xxtxp
T

n

( )
( ) ( )





−Σ−−== −

Σ 1

1

12

1

2

1
exp)1|( 2/12/

µµ
π

xxtxp
T

n

Picking A Class

• We again use Bayes rule:
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label probability

MVG conditional

feature probability

Prior class

probability

Prior feature

probability (ignored)

The Beauty of Homoscedasticity

• Recall we assumed Σ same for all classes

• When is P(y0|x)>P(y1|x)???
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Linear!!!

Example
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The decision boundary is at p(y=1|x) = 0.5

Homoscedastic LDA Discussion

• For multiclass, this gives convex decision 

boundaries

• Satisfies desiderata for multiclass decision 

boundaries

• How realistic is this?

• What do we give up?
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Heteroscedastic Distributions
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Comparing LTU, LR, LDA

• Big debate about the relative merits of

– direct classifiers (like LTU) versus

– conditional models (like LR) versus

– generative models (like LDA)

LDA vs LR

• What is the relationship?

– In LDA, it turns out the p(t|x) can be expressed as a logistic function 
where the weights are some function of µ1, µ2, and Σ!

– But, the converse is NOT true.  If p(t|x) is a logistic function, that does 
not imply p(x|t) is MVG

• LDA makes stronger modeling assumptions than LR

– when these modeling assumptions are correct, LDA will perform better

• LDA is asymptotically efficient: in the limit of very large training sets, there is 
no algorithm that is strictly better than LDA

– however, when these assumptions are incorrect, LR is more robust

• weaker assumptions, more robust to deviations from modeling assumptions

• if the data are non-Gaussian, then in the limit, logistic outperforms LDA

• For this reason, LR is a more commonly used algorithm

Issues

• Statistical efficiency: if the generative model is correct, then it usually 
gives better accuracy, especially for small training sets.

• Computational efficiency: generative models typically are the easiest 
to compute.  In LDA, we estimated the parameters directly, no need 
for gradient ascent

• Robustness to changing loss function: Both generative and 
conditional models allow the loss function to change without re-
estimating the model.  This is not true for direct LTU methods

• Robustness to model assumptions: The generative model usually 
performs poorly when the assumptions are violated.

• Robustness to missing values and noise: In many applications, some 
of the features x(i)

j may be missing or corrupted for some training 
examples.  Generative models provide better ways of handling this 
than non-generative models.


