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Classification

e Supervised learning framework
e Features can be anything
e Targets are discrete classes:
— Safe mushrooms vs. poisonous
— Malignantvs. benign
— Good credit risk vs. bad
e Can we treat classes as numbers?
— Single class?
— Multi class?

Representing Classes

Interpret t{) as the probability that the it element
isin a particular class

Classes usually disjoint
For multiclass, t is a vector
ti[j]=t=1if i*" element is in class j, 0 OTW

Notation: For convenience, we will sometimes
refer to the “raw” variables x, rather than the
features as seen through the lens of our features, ¢

What is a Linear Disciminant?

* Simplest kind of classifer, a linear threshold unit (LTU):

1oif wx ++0,w, 2w,
yx = .
0 otherwise

* We sometimes assume w,=1, so y(x)=w'x

¢ Alinear discriminant is an n-1 dimensional hyperplane

e wisorthogonal to this

¢ We'll look at three algorithms, all of which learn linear decision

boundaries:

— Directly learn the LTU: Using Least Mean Square (LMS) algorithm
— Learn the conditional distribution: Logistic regression
— Learn the joint distribution: Linear discriminant analysis (LDA)

Decision Boundaries

* Aclassifier can be viewed as partitioning the input space or feature
space X into decision regions

Xy
¢ Alinear threshold unit always produces a linear decision boundary. A

set of points that can be separated by a linear decision boundary is
linearly separable.

What can be expressed?

¢ Examples of things that can be expressed
(Assume n boolean (0/1 features)
— Conjunctions:
® X MX3Mg 1 Lxg + 0%y +1oxg + 1%, 2 3
® X Mgt 1oxg 0%y +-1oxg + 1x, 22
— at-least-m-of-n
o at-least-2-of(x,,x,,x,)
¢ 1x+ 1%+ 0% +1x22
e Examples of things that cannot be expressed:
— Non-trivial disjunctions:
o (Xy%g) + (X3"Xy)
— Exclusive-Or
o (X xp) + (=g xy)




Non-linearly separable example

Multiclass

® k classes
¢ O(k?) one vs. one classifiers
— Expensive
— May not be consistent
e k-1 one vs. rest classifiers
— Less expensive
— Still may not be consistent
e K linear functions
— Assign x to class j if wj'x> w;"x for all i
— Gives convex, singly connected decision regions
— How to pick the linear functions?

Why not use regression?

* Regression minimizes sum of squared
errors on target function

* Gives strong influence to outliers

Note: Class
labels are in Z
dimension

4 2 o 2 1

Magenta = linear regression

The “Neural” Story (Part I)

Nice to justify machine learning w/nature
Naive introspection works badly
Neural model biologically plausible

Single neuron, linear threshold unit = perceptron
* (Longer rant on this later...)

Perceptron

node/ Y
neuron

fis a simple step function (sgn)

Perceptron Learning

We are given a set of inputs x(1)...x(

t...t" js a set of target outputs (boolean) {-1,1}
w is our set of weights

output of perceptron = w'x
Perceptron_error(x), w) = -net(x®,w) t0

Goal: Pick w to optimize:

min Z perceptron_error(x"”

iemisclassified

W)




Update Rule

Repeat until convergence:

\vd ‘v’:wj<—wj+04xj(i)t(i)

iemisclassified j ]

“Learning Rate”
(can be any constant)

« i iterates over samples
« j iterates over weights

http://neuron.eng.wayne.edu/java/Perceptron/New38.html

Perceptron Learning Properties
(LTU Properties)

¢ Good news:

— If there exists a set of weights that will correctly
classify every example, the perceptron learning rule
will find it

— Does not depend on step size

e Bad news:

— Perceptrons can represent only a small class of
functions, “linearly separable,” functions

— May oscillate if not separable
— No obvious generalization for multiclass

Logistic Regression

* Inlogistic regression, we learn the conditional distribution P(t|x)
* Let p,(x; W) be our estimate of P(t|x), where W is a vector of
adjustable parameters.
* Assume there are two classes, t=0and t =1 and
wix

pbw)=—"—
1+

wix
e

Ppolx;w)=1-p,(x;w)

* This is equivalent to

pxw)_ o
Po(xiw

log w X

* |0W, the log odds of class 1 s a linear function of x

Why this form?

* One reason: transforms a linear function in the range (-eo,+0) to be
positive and sum to 1 so that it can represent a probability

0.0 >

Constructing a Learning Algorithm

* Find the probability distribution h that is most likely, given the data.

P(X |h,)P(h,)

argmax P(h, | X)=argmax ———“"—"= byBayes’ Rule
gmax Ph, | X)=argn P(X)
=argmax P(X 1 h,)P(h,) because P(X) doesn’t depend on h
h,
=argmax P(X | h,) if we assume P(h) is uniform
h,,

=argmaxlog P(X | h,) because log is monotone
hy

¢ The likelihood function views P(X|h,,) as a function of the parameters in the
model. In this case, our parameters are the weights, w.
L(w;X) = P(X|h,)
* The log likelihood is a commonly used objective function for learning
algorithms. It is denoted I(w;X)
* The w that maximizes the likelihood of the training data is called the

maximum likelihood estimator

Log Likelihood for Conditional
Probability Estimators

* We can express the log likelihood in a compact from called the cross-entropy
« Take an example (x,t)

— ify®=0, the log likelihood is log(1-p, (x; w))

— ifyW=1, the log likelihood is log p,(x; 6)
* These two are mutually exclusive, so we can combine them to get:

((w;x?, ) =1log Pt 1x”,w) = (l—t"’)logll— p,(x"’;w)]+t"’ log p,(x”; w)

¢ The goal of our learning algorithm will be to find w to maximize:

J(w)=/l(w;X,t)




Computing the Gradient
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Gradient cont.

¢ Another way of writing the logistic regression function is:

P p———
I+e™™
* Sowe get:
Wexw) L9 ey
Bw/ (I+e™ ") Bwj
— |r - e’“[‘m 9 (—wrx‘”)
(I+e™")? oW,

1 IR
:me ")
e

(. (i)

=pxsw)A = p,x7sw)x;

Gradient cont.

¢ The gradient of the loglikelihood for a single point is:

i((w‘x‘” 1) _[ D —p (xw) apl(x(";w)
ow o

T L P, xPiwy) ow
J

_ 10 —p (xViw) JP @. _ (OR (i)
—[7/1'(xmm,)“,mxmv“,,, (X w)(A = p (X w))x

= = p,(x; w)x?;

i

o The overall gradient is:

aJ : : :
=T

J

Compare w/percepton rule!

Summary of Logistic Regression

¢ Learns the Conditional Probability Distribution P(t|x)
¢ No closed form solution

e Very simple expression for gradient
— Solve by local search:
* Begins with initial weight vector.
¢ Gradient ascent to maximize objective function.
* Objective function is the log likelihood of the data
* Algorithm seeks the probability distribution P(t|x) that is most
likely given the data.

¢ May be done online or in batch

e Can be used with acceleration methods (Newton-
Raphson, etc.)

What We Already Know

¢ Linear Threshold Unit (LTU)

— Tries to discover a linear function (in feature
space) that separates positive and negative
examples

e Logistic Regression
— Uses regression to estimate the function

log X W) (x:w) =w'x

PO(X;W)

Density Estimation
e Basic unsupervised learning technique

¢ Discussed here in context of classification

e |dea: Estimate joint probability of features and
class labels




Discrete Case

e Suppose we know P(X;...X,T)
¢ How do we get this?

¢ Maximum likelihood estimate comes from
counting (relative frequency)

Bernouli distribution

* We see a hew X;...X,
e What is our guess for t?

Betting ony

e Assuming:

— Binary loss function

— Choices: t0, t1
e Favor t0 when P(t0]x,...x,) > P(t; | X;...x,)
¢ Use definition of conditional probability:

_ P(@0x,..x,)

P(0lx,...x
(0165 P(x,...x,)

So, are we done???

¢ How many parameters needed for joint?
e Is this practical?
¢ Simplification (Naive Bayes):

P(X,..X, It):HP(XI. 17)

Q: How is this more practical?

Naive Bayes in Action

e Spam filtering

e X1..Xn: Spam related features

e t: Spam label

e Combine Bayes Rule w/Naive Bayes:

P(X,.X,|DP@)
P(X,..X,)
[1P&; 10pP@)

T P(X,.X,)

P(t1X,..X,) =

Things to note:
Do we worry about P(X1...Xn)?
Influence of P(t)?

Is Naive Bayes Reasonable?

¢ Are features correlated within classes?

¢ How would it hurt us if they were?

* More on this when we discuss Bayesian
networks

Linear Discriminant Analysis

¢ InLDA, we learn the distribution P(x|t)

e We assume that x is continuous

e We assume P(x|t) is distributed accordingto a
multivariate normal distribution and P(t) is a discrete
distribution




Estimating the MVG parameters

¢ Given a set of data points {x%,..., xN}, the maximum likelihood
estimates for the parameters of the MVG are:

ﬂ :%Zx(i)

A 1 . .
Y= O _ 7 O _ mT
~ 2[ =" - )

Putting it all together in LDA

¢ Also called Gaussian Discriminant Analysis
* Here

— t~Bernoulli(w)

- x|t=0 ~ N(,, X)

- x|t=1~N(u,, X)
e Writing this out, we get:

1 T -1
- = 1 — —
p(xlt—O)—(2”),,,2‘2‘.,1%1{ z(x Ho) 27 l”o):|

1 7 1
— — 1 P — —
plxle=1) = exp{ S T ﬂ.):l

Picking A Class

e We again use Bayes rule:

MVG conditional Prior class
feature probability probability

\ -~

P(t1X)= P(X 1t)P(t)
P(X)

T ~

Posterior Prior feature
label probability probability (ignored)

The Beauty of Homoscedasticity

e Recall we assumed X same for all classes
o Whenis P(yO|x)>P(y1]x)???

Wex"[ -z (*ﬂu)} p(0)>
WEXP[ Moz ‘(x—m)} PO
(e pt) =7 (v =ty ) > o g ) 27 (o= g )+ &

Linear!!!

Example

The decision boundary is at p(y=1|x) = 0.5

Homoscedastic LDA Discussion

¢ For multiclass, this gives convex decision
boundaries

o Satisfies desiderata for multiclass decision
boundaries

¢ How realistic is this?
¢ What do we give up?




Heteroscedastic Distributions

(assuming uniform class priors, in this example)

Comparing LTU, LR, LDA

* Big debate about the relative merits of
— direct classifiers (like LTU) versus
— conditional models (like LR) versus
— generative models (like LDA)

LDA vs LR

What is the relationship?
— InLDA, it turns out the p(t|x) can be expressed as a logistic function
where the weights are some function of ,, {1,, and Z!
— But, the converse is NOT true. If p(t|x) is a logistic function, that does
not imply p(x|t) is MVG
LDA makes stronger modeling assumptions than LR
— when these modeling assumptions are correct, LDA will perform better

* LDA is asymptotically efficient: in the limit of very large training sets, there is
no algorithm that is strictly better than LDA

— however, when these assumptions are incorrect, LR is more robust
* weaker assumptions, more robust to deviations from modeling assumptions
« if the data are non-Gaussian, then in the limit, logistic outperforms LDA
* For this reason, LR is a more commonly used algorithm

Issues

Statistical efficiency: if the generative model is correct, then it usually
gives better accuracy, especially for small training sets.
Computational efficiency: generative models typically are the easiest
to compute. In LDA, we estimated the parameters directly, no need
for gradient ascent

Robustness to changing loss function: Both generative and
conditional models allow the loss function to change without re-
estimating the model. This is not true for direct LTU methods
Robustness to model assumptions: The generative model usually
performs poorly when the assumptions are violated.

Robustness to missing values and noise: In many applications, some
of the features x(); may be missing or corrupted for some training
examples. Generative models provide better ways of handling this
than non-generative models.




