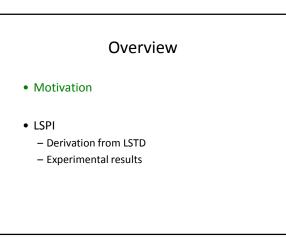
Least Squares Policy Iteration

Ronald Parr CPS 271

Joint work with: Michail Lagoudakis



The RL Story

- MDPs, Decision theory tell us how to act optimally
- Beautiful theory hard to use in practice
- Problem: Satisfying the Markov property means that there are usually way too many states
- Q: How can machine learning come to the rescue?

Need for Function Approximation

- MDPs
 - State space with |S| states
 - n state variabes (fluents) imply $|S|=2^n$
 - Need to assign actions to all |S| states
 - Continuous state spaces are problematic
- Many MDP/RL algorithms use value functions
- How can we use our expertise in machine learning to extrapolate values for the entire state even if we have visited only a small fraction of it?

Example: TD-Gammon

- Used a neural network to represent value function
- Brilliant success for RL
 - Plays at level of best human players
 - Inspired a generation of RL researchers
- But...
 - Required hand crafted features
 - Required about 1 million games of experience
 - Hard to reproduce:
 - For other implementations
 - For other games

Standard RL Approaches

- Reinforcement often presented as stochastic gradient descent
- Agent observes (s,a,r,s')
- Adjusts value function representation to make v(s) closer to r+γv(s')
- Surprisingly, these approaches can diverge or oscillate when standard stochastic gradient does not
- We diverge from the standard view and present RL from a linear regression viewpoint

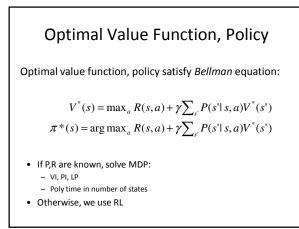
LSPI Teaser

- LSPI is stable and efficient
 - Never diverges or gives meaningless answers
 - Uses efficient linear algebra routines
- LSPI reuses data
 - Remembers past experiences
 - All past experiences relevant to all policies

Terminology

- S: state space
- s: individual states
- R: reward
- γ: discount
- V: state value
- Q: state-action value
- Policy: $\pi(s) \rightarrow a$

Objective: Maximize expected, discounted return



- Can't represent Value Function as a big vector
- Use (parametric) function approximator
- Neural network
 Linear regression (least squares)
- Nearest neighbor (with interpolation)
- (Typically) sample a subset of the the states
- Use function approximation to "generalize"

Approximate Solutions

• The standard Bellman equation:

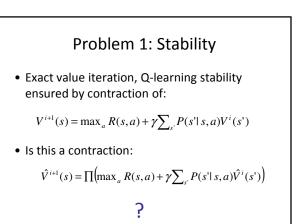
$$V^{*}(s) = \max_{a} R(s, a) + \gamma \sum_{s'} P(s'|s, a) V^{*}(s')$$

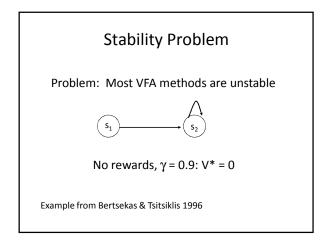
• "Fixed Point" Bellman Equation With approximation

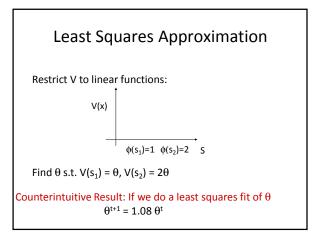
$$\hat{V}^{*}(s) = \prod \left(\max_{a} R(s, a) + \gamma \sum_{s'} P(s' | s, a) \hat{V}^{*}(s') \right)$$

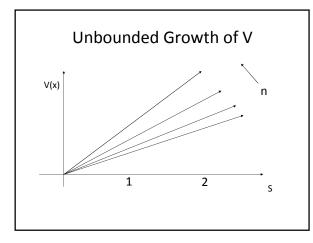
- Π is a *projection* operator
 - Projects into space of representable value functions

- Often implicit









Understanding the Problem

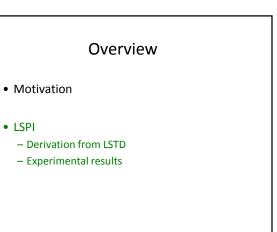
- What went wrong?
 - VI reduces error in maximum norm
 - Least squares (= projection) non-expansive in L₂
 - May increase maximum norm distance
 - Grows max norm error at faster rate than VI
- Conclusion: Alternating value iteration and regression is risky business

Problem 2: Efficiency

- Most RL methods can be viewed as stochastic gradient descent of some kind
- Q-learning:

$$Q^{i+1}(s,a) = (1-\alpha)Q^i(s,a) + \alpha \left(r + \gamma V^i(s',a)\right)$$
$$V^i(s',a) = \max_a Q^i(s,a)$$

- Convergence requires:
 - Small steps (small α)
 - Visiting every state infinitely often



How does LSPI fix these?

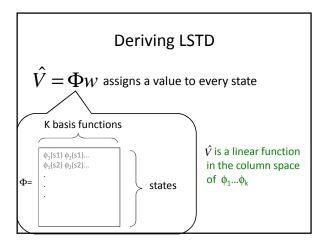
- LSPI is based on LSTD
- Policy evaluation alg. by Bratdke & Barto 96
- Stability:
 - LSTD directly solves for the fixed point of the approximate Bellman equation
 - With SVD, this is always well defined
- Data efficiency
 - LSTD finds best solution for any finite data set
 - Makes a single pass over the data for each policy
 - Can be implemented incrementally

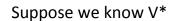
OK, What's LSTD?

- Least Squares Temporal Difference Learning
- Linear value function approximation

$$\hat{V}(s) = \sum_{k} w_k \phi_k(s)$$

- NOT necessarily linear in state variables
- Each φ_k can be an arbitrary function
- Compare with neural nets





• Want:

$$\Phi_W \approx V^*$$

• Projection minimizes squared error

$$w = (\Phi^T \Phi)^{-1} \Phi^T V^*$$

Textbook least squares projection

But we don't know V*...

• Require consistency:

$$\hat{V}^* = \prod \left(R + \gamma P \hat{V}^* \right)$$

• Substituting least squares projection

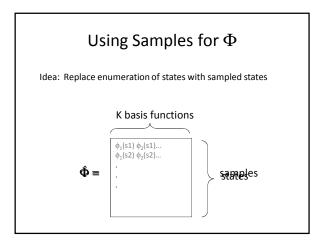
$$\Phi_W = \Phi(\Phi^T \Phi)^{-1} \Phi^T (R + \gamma P \Phi_W)$$

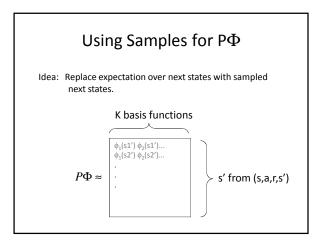
• Solving for w

$$w = (\Phi^T \Phi - \Phi^T P \Phi)^{-1} \Phi^T R$$

Almost there...

$$w = (\Phi^T \Phi - \Phi^T P \Phi)^{-1} \Phi^T R$$
• Matrix to invert is only k x k
• But...
- Expensive to construct matrix
- We don't know P
- We don't know R





Putting it Together

• LSTD needs to compute:

$$w = (\Phi^T \Phi - \Phi^T P \Phi)^{-1} \Phi^T R$$

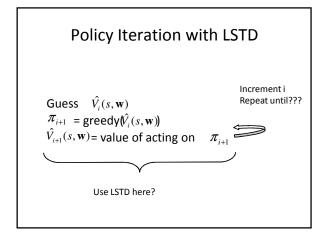
• The hard part of which is the kxk matrix:

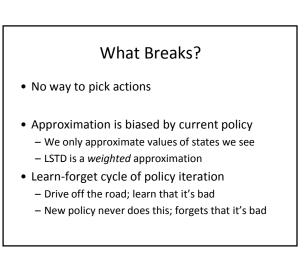
$$B = \Phi^T \Phi - \Phi^T P \Phi$$

• This can be done incrementally, for each (s,a,r,s') sample:

 $B_{ij} \leftarrow B_{ij} + \phi_i(s)\phi_j(s) + \phi_i(s)\phi_j(s')$

- Does O(k²) work per datum
- Approaches model-based answer in limit
- Finding fixed point requires inverting matrix
- Fixed point almost always exists
- Can use SVM if B is singular
- Stable; efficient





LSPI

- LSPI makes LSTD suitable for Policy Iteration
- LSTD: state -> state
- LSPI: (state, action) -> (state, action)
- Similar to Q learning
- Implementation is subtle
- Has deep consequences:
 - Disconnects policy evaluation from data collection
 - Permits reuse of data across iterations

Implementing LSPI

• Both LSTD and LSPI must compute:

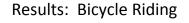
 $B = \Phi^T \Phi - \Phi^T P \Phi$

- But LSPI has a factor of (#A) more basis fns
- Duplicate basis functions for each action:
 - $\phi_i^{a1}(s) = \phi_i(s)$ if a_1 taken, 0 otherwise,
 - $\phi_i^{a2}(s) = \phi_i(s)$ if a_2 taken, 0 otherwise, etc
- For each (s,a,r,s') sample:

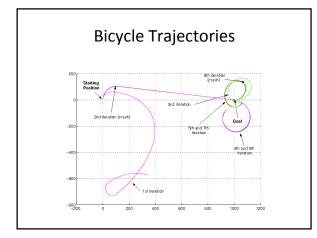
$$B_{ij} \leftarrow B_{ij} + \phi_i^a(s)\phi_j^a(s) - \phi_i^a(s)\phi_j^{\pi(s')}(s')$$

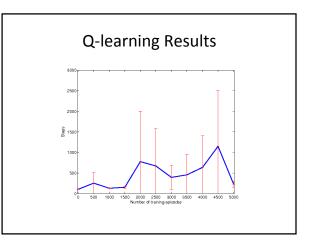
Running LSPI

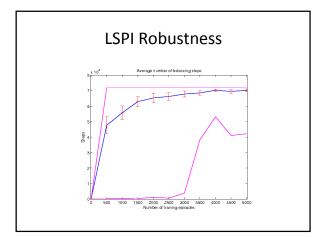
- Start w/random weights (= random policy)
- Collect a database of (s,a,r,s') experiences
- Repeat
 - Evaluate current policy against database
 - Run LSPI to generate new set of weights
 - New weights imply new policy
 - Replace current weights with new weights
- Until convergence (or e weight change)



- Randlov and Alstrom simulator
- Watch random controller operate bike
- Collect ~40,000 (s,a,r,s') samples
- Pick 20 simple basis functions (×5 actions)
- Make 5-10 passes over data (PI steps)
- Result: Controller that balances and rides to goal







So, what's the bad news?

- (k (#A))² can sometimes be big
 - Lots of storage
 - Matrix inversion can be expensive
- Linear VFA is "weak"
- Bicycle needed "shaping" rewards
- Still haven't solved
 - Feature selection (issue for all machine learning, but RL seems even more sensitive)
 - Exploration vs. Exploitation

Conclusion

- Reinforcement learning combines decision theory with machine learning techniques
- Key idea: Avoid covering the large state space imposed by adherence to Markov property
- Key challenges:
 - Stability
 - Non-linearity introduced by max in Bellman equation
 - Feature/model selection
 - Exploration vs. Exploitation
- Many methods exist for RL
- LSTD/LSPI represent one family of methods closely tied to linear regression