Least Squares Policy Iteration

Ronald Parr
CPS 271

Joint work with: Michail Lagoudakis

Overview

e Motivation

e LSPI
— Derivation from LSTD
— Experimental results

The RL Story

MDPs, Decision theory tell us how to act optimally
Beautiful theory — hard to use in practice

Problem: Satisfying the Markov property means that
there are usually way too many states

Q: How can machine learning come to the rescue?

Need for Function Approximation

e MDPs

— State space with |S] states

— n state variabes (fluents) imply |S|=2"

— Need to assign actions to all |S| states

— Continuous state spaces are problematic

Many MDP/RL algorithms use value functions

How can we use our expertise in machine learning
to extrapolate values for the entire state even if we
have visited only a small fraction of it?

Example: TD-Gammon

Used a neural network to represent value function

Brilliant success for RL

— Plays at level of best human players

— Inspired a generation of RL researchers

But...

— Required hand crafted features

— Required about 1 million games of experience

— Hard to reproduce:
* For other implementations
* For other games

Standard RL Approaches

Reinforcement often presented as stochastic
gradient descent

e Agent observes (s,a,r,s’)

Adjusts value function representation to make v(s)
closer to r+yv(s’)

Surprisingly, these approaches can diverge or
oscillate when standard stochastic gradient does not

L]

We diverge from the standard view and present RL
from a linear regression viewpoint

LSPI Teaser

e LSPI is stable and efficient

— Never diverges or gives meaningless answers
— Uses efficient linear algebra routines

¢ LSPl reuses data
— Remembers past experiences
— All past experiences relevant to all policies

Terminology

e S:state space

¢ s:individual states
e R:reward

e 7y:discount

e V:state value

e Q: state-action value
e Policy: 7z(s)—>a

Objective: Maximize expected, discounted return

Ei Y,
=0

Optimal Value Function, Policy

Optimal value function, policy satisfy Bellman equation:

Vi(s)= max, R(s,a)+ 729, P(s'l's,a)V"(s")
7*(s) =argmax, R(s,a)+yY. P(s'ls,a)V"(s")

¢ If PR are known, solve MDP:
— VI, PI, LP
— Poly time in number of states
e Otherwise, we use RL

Implementing VFA

e Can’t represent Value Function as a big vector
¢ Use (parametric) function approximator

— Neural network

— Linear regression (least squares)

— Nearest neighbor (with interpolation)

(Typically) sample a subset of the the states
Use function approximation to “generalize”

L]

L]

Approximate Solutions

e The standard Bellman equation:
V'(s)=max, R(s,a)+ 7" P(s'ls,a)V'(s")
¢ “Fixed Point” Bellman Equation With approximation
V(s)= H(maxa R(s,a)+ ;/ZS,P(S‘I s,a)\?*(s‘))

e ITis a projection operator
— Projects into space of representable value functions
— Often implicit

Problem 1: Stability

¢ Exact value iteration, Q-learning stability
ensured by contraction of:

Vitl(s) = max, R(s,a)+ }/ZA_,P(S'I s,a)V'(s")
e |s this a contraction:

V() =Tlmax, R(s.a)+ 7Y, P(s'l5.a)V' (")

?

Stability Problem

Problem: Most VFA methods are unstable

Ol

No rewards, y=0.9: V*=0

Example from Bertsekas & Tsitsiklis 1996

Least Squares Approximation

Restrict V to linear functions:

V(x)

0(s;)=1 0(s;)=2 s
Find 8 s.t. V(s;) =8, V(s,) = 20

Counterintuitive Result: If we do a least squares fit of 0
6% =1.08 6t

Unbounded Growth of V

V(x) \

n

Understanding the Problem

¢ What went wrong?
— Vlreduces error in maximum norm
— Least squares (= projection) non-expansive in L,
— May increase maximum norm distance

— Grows max norm error at faster rate than VI

¢ Conclusion: Alternating value iteration and
regression is risky business

Problem 2: Efficiency

¢ Most RL methods can be viewed as stochastic
gradient descent of some kind

¢ Q-learning:

0" (s,a)=(1-@)Q' (s,a)+ alr+ Wi(s'.a))
Vi(s',a)=max, Q'(s,a)

e Convergence requires:
— Small steps (small o)
— Visiting every state infinitely often

Overview
e Motivation
o LSPI

— Derivation from LSTD

— Experimental results

How does LSPI fix these?

e LSPlis based on LSTD
¢ Policy evaluation alg. by Bratdke & Barto 96
e Stability:
— LSTD directly solves for the fixed point of the approximate
Bellman equation
— With SVD, this is always well defined
¢ Data efficiency
— LSTD finds best solution for any finite data set
— Makes a single pass over the data for each policy
— Can be implemented incrementally

OK, What’s LSTD?

e Least Squares Temporal Difference Learning
e Linear value function approximation

V()= wd,(s)

NOT necessarily linear in state variables
Each ¢, can be an arbitrary function
Compare with neural nets

Deriving LSTD

V= (IDW assigns a value to every state

K basis functions
/—/%

0,(51) 0,(51)... Vis a linear function
01(52) 95(s2)... in the column space
®= states of 0;.-0

Suppose we know V*
e Want:
Pw=V"

¢ Projection minimizes squared error

w=(®)TV’

Textbook least squares projection

But we don’t know V*...
e Require consistency:

V= H(R + ;PV*)
e Substituting least squares projection

Dw = PP P) ' ®" (R+ PDdw)

¢ Solving for w

w=(D'd- " PP) 'R

Almost there...

w=(®"®-d"PP)'®'R

e Matrix to invert is only k x k
e But...
— Expensive to construct matrix
— We don’t know P
— We don’t know R

Using Samples for ®

Idea: Replace enumeration of states with sampled states

K basis functions
—

0y(s1) §,(s1)...
01(52) §,(s2)...

e
1

Ameles

Using Samples for P

Idea: Replace expectation over next states with sampled
next states.

K basis functions
—

04(s1") Py(s2”)...
0,(52') 0y(s2')...

Po

0

s’ from (s,a,r,s’)

Putting it Together
¢ LSTD needs to compute:
w=(d'®-d"PO)' PR
¢ The hard part of which is the kxk matrix:
B=0'®-d' PP

¢ This can be done incrementally, for each
(s,a,r,s’) sample:

B; < B; +¢,()9,(5) +8,(5)9,(s")

LSTD Summary

Does O(k2) work per datum
Approaches model-based answer in limit
Finding fixed point requires inverting matrix

L]

L]

Fixed point almost always exists
Can use SVM if B is singular

L]

Stable; efficient

Policy Iteration with LSTD

Incrementi
Guess V,(s,w) Repeat until???
T = greedy(V (s,w)
Vi.(s,W)=value of actingon 7, =

i+l

— /
YT

Use LSTD here?

What Breaks?

¢ No way to pick actions

e Approximation is biased by current policy
— We only approximate values of states we see
— LSTD is a weighted approximation
¢ Learn-forget cycle of policy iteration
— Drive off the road; learn that it’s bad
— New policy never does this; forgets that it’s bad

LSPI

LSPI makes LSTD suitable for Policy Iteration
LSTD: state -> state

LSPI: (state, action) -> (state, action)
Similar to Q learning

Implementation is subtle

Has deep consequences:

— Disconnects policy evaluation from data collection
— Permits reuse of data across iterations

Implementing LSPI

Both LSTD and LSPI must compute:
B=®"®-®"Pd
But LSPI has a factor of (#A) more basis fns

Duplicate basis functions for each action:
— 021(s) = ¢(s) if a, taken, 0 otherwise,
— 022 (s) = ¢,(s) if a, taken, O otherwise,etc

For each (s,a,r,s’) sample:

B, < B, +¢"()$,"(5)— 9" ()9, (s")

Running LSPI

Start w/random weights (= random policy)
Collect a database of (s,a,r,s’) experiences
Repeat

— Evaluate current policy against database
® Run LSPI to generate new set of weights
¢ New weights imply new policy
— Replace current weights with new weights

Until convergence (or e weight change)

Results: Bicycle Riding

¢ Randlov and Alstrom simulator

¢ Watch random controller operate bike

e Collect ~40,000 (s,a,r,s’) samples

¢ Pick 20 simple basis functions (x5 actions)
e Make 5-10 passes over data (Pl steps)

* Result:
Controller that balances and rides to goal

Bicycle Trajectories

- 3 200 400 600 800 1000 1200

Q-learning Results

0 500 1000 1500 2000 2500 000 3500 4000 4500 5000
er of training episodes

LSPI Robustness

w1dt Average number of balancing steps

Steps
PN

o

500 1000 1500 2000 2500 8000 3500 4000 4500 5000
Nurmber of training episodes

So, what’s the bad news?

(k (#A))2 can sometimes be big

— Lots of storage

— Matrix inversion can be expensive
Linear VFA is “weak”

Bicycle needed “shaping” rewards
Still haven’t solved

— Feature selection (issue for all machine learning,
but RL seems even more sensitive)

— Exploration vs. Exploitation

Conclusion

Reinforcement learning combines decision theory with
machine learning techniques

Key idea: Avoid covering the large state space imposed by
adherence to Markov property

Key challenges:

— Stability

— Non-linearity introduced by max in Bellman equation

— Feature/model selection

— Exploration vs. Exploitation

Many methods exist for RL

LSTD/LSPI represent one family of methods closely tied to
linear regression

