
1

Least Squares Policy Iteration

Ronald Parr

CPS 271

Joint work with: Michail Lagoudakis

Overview

• Motivation

• LSPI

– Derivation from LSTD

– Experimental results

The RL Story

• MDPs, Decision theory tell us how to act optimally

• Beautiful theory – hard to use in practice

• Problem: Satisfying the Markov property means that

there are usually way too many states

• Q: How can machine learning come to the rescue?

Need for Function Approximation

• MDPs

– State space with |S| states

– n state variabes (fluents) imply |S|=2n

– Need to assign actions to all |S| states

– Continuous state spaces are problematic

• Many MDP/RL algorithms use value functions

• How can we use our expertise in machine learning
to extrapolate values for the entire state even if we
have visited only a small fraction of it?

Example: TD-Gammon

• Used a neural network to represent value function

• Brilliant success for RL

– Plays at level of best human players

– Inspired a generation of RL researchers

• But…

– Required hand crafted features

– Required about 1 million games of experience

– Hard to reproduce:

• For other implementations

• For other games

Standard RL Approaches

• Reinforcement often presented as stochastic

gradient descent

• Agent observes (s,a,r,s’)

• Adjusts value function representation to make v(s)

closer to r+γv(s’)

• Surprisingly, these approaches can diverge or

oscillate when standard stochastic gradient does not

• We diverge from the standard view and present RL

from a linear regression viewpoint

2

LSPI Teaser

• LSPI is stable and efficient

– Never diverges or gives meaningless answers

– Uses efficient linear algebra routines

• LSPI reuses data

– Remembers past experiences

– All past experiences relevant to all policies

Terminology

• S: state space

• s: individual states

• R: reward

• γ: discount

• V: state value

• Q: state-action value

• Policy: as →)(π

∑
∞

=

γ
0t

t

trE

Objective: Maximize expected, discounted return

Optimal Value Function, Policy

∑

∑

+=

+=

'

*

'

**

)'(),|'(),(maxarg)(*

)'(),|'(),(max)(

sa

sa

sVassPasRs

sVassPasRsV

γπ

γ

Optimal value function, policy satisfy Bellman equation:

• If P,R are known, solve MDP:

– VI, PI, LP

– Poly time in number of states

• Otherwise, we use RL

Implementing VFA

• Can’t represent Value Function as a big vector

• Use (parametric) function approximator

– Neural network

– Linear regression (least squares)

– Nearest neighbor (with interpolation)

• (Typically) sample a subset of the the states

• Use function approximation to “generalize”

Approximate Solutions

• The standard Bellman equation:

• “Fixed Point” Bellman Equation With approximation

• Π is a projection operator

– Projects into space of representable value functions

– Often implicit

∑+=
'

**)'(),|'(),(max)(
sa sVassPasRsV γ

()∑+∏=
'

**)'(ˆ),|'(),(max)(ˆ
sa sVassPasRsV γ

Problem 1: Stability

• Exact value iteration, Q-learning stability

ensured by contraction of:

• Is this a contraction:

∑+=+

'

1
)'(),|'(),(max)(

s

i

a

i
sVassPasRsV γ

()∑+∏=+

'

1)'(ˆ),|'(),(max)(ˆ
s

i

a

i sVassPasRsV γ

?

3

Stability Problem

Problem: Most VFA methods are unstable

s2
s1

No rewards, γ = 0.9: V* = 0

Example from Bertsekas & Tsitsiklis 1996

Least Squares Approximation

Restrict V to linear functions:

Find θ s.t. V(s1) = θ, V(s2) = 2θ

Counterintuitive Result: If we do a least squares fit of θ
θt+1 = 1.08 θt

φ(s1)=1 S

V(x)

φ(s2)=2

Unbounded Growth of V

1 2

n

S

V(x)

Understanding the Problem

• What went wrong?

– VI reduces error in maximum norm

– Least squares (= projection) non-expansive in L2

– May increase maximum norm distance

– Grows max norm error at faster rate than VI

• Conclusion: Alternating value iteration and

regression is risky business

Problem 2: Efficiency

• Most RL methods can be viewed as stochastic

gradient descent of some kind

• Q-learning:

• Convergence requires:

– Small steps (small α)

– Visiting every state infinitely often

()
),(max),'(

),'(),()1(),(
1

asQasV

asVrasQasQ

i

a

i

iii

=

++−=+ γαα

Overview

• Motivation

• LSPI

– Derivation from LSTD

– Experimental results

4

How does LSPI fix these?

• LSPI is based on LSTD

• Policy evaluation alg. by Bratdke & Barto 96

• Stability:

– LSTD directly solves for the fixed point of the approximate
Bellman equation

– With SVD, this is always well defined

• Data efficiency

– LSTD finds best solution for any finite data set

– Makes a single pass over the data for each policy

– Can be implemented incrementally

OK, What’s LSTD?

• Least Squares Temporal Difference Learning

• Linear value function approximation

• NOT necessarily linear in state variables

• Each φk can be an arbitrary function

• Compare with neural nets

∑=
k kk swsV)()(ˆ φ

Deriving LSTD

is a linear function

in the column space

of φ1…φk

wV Φ=ˆ

K basis functions

states

φ1(s1) φ2(s1)...

φ1(s2) φ2(s2)…

.

.

.

Φ=

assigns a value to every state

V̂

Suppose we know V*

• Want:

• Projection minimizes squared error

*Vw ≈Φ

*1)(Vw
TT ΦΦΦ= −

Textbook least squares projection

But we don’t know V*…

• Require consistency:

• Substituting least squares projection

• Solving for w

()** ˆˆ VPRV γ+∏=

()wPRw
TT Φ+ΦΦΦΦ=Φ − γ1)(

RPw
TTT ΦΦΦ−ΦΦ= −1)(

Almost there…

• Matrix to invert is only k x k

• But…

– Expensive to construct matrix

– We don’t know P

– We don’t know R

RPw
TTT ΦΦΦ−ΦΦ= −1)(

5

Using Samples for Φ

K basis functions

φ1(s1) φ2(s1)...

φ1(s2) φ2(s2)…

.

.

.

Idea: Replace enumeration of states with sampled states

states=Φ samples=Φ̂

Using Samples for PΦ

K basis functions

φ1(s1’) φ2(s1’)...

φ1(s2’) φ2(s2’)…

.

.

.

Idea: Replace expectation over next states with sampled

next states.

s’ from (s,a,r,s’)≈ΦP

Putting it Together

• LSTD needs to compute:

• The hard part of which is the kxk matrix:

• This can be done incrementally, for each

(s,a,r,s’) sample:

RPw
TTT ΦΦΦ−ΦΦ= −1)(

ΦΦ−ΦΦ= PB
TT

)'()()()(ssssBB jijiijij φφφφ ++←

LSTD Summary

• Does O(k2) work per datum

• Approaches model-based answer in limit

• Finding fixed point requires inverting matrix

• Fixed point almost always exists

• Can use SVM if B is singular

• Stable; efficient

Policy Iteration with LSTD

Increment i

Repeat until???

Use LSTD here?

Guess),(ˆ
wsVi

1+iπ

),(ˆ
1 wsVi+

= greedy()

= value of acting on 1+iπ
),(ˆ

wsVi

What Breaks?

• No way to pick actions

• Approximation is biased by current policy

– We only approximate values of states we see

– LSTD is a weighted approximation

• Learn-forget cycle of policy iteration

– Drive off the road; learn that it’s bad

– New policy never does this; forgets that it’s bad

6

LSPI

• LSPI makes LSTD suitable for Policy Iteration

• LSTD: state -> state

• LSPI: (state, action) -> (state, action)

• Similar to Q learning

• Implementation is subtle

• Has deep consequences:

– Disconnects policy evaluation from data collection

– Permits reuse of data across iterations

Implementing LSPI

• Both LSTD and LSPI must compute:

• But LSPI has a factor of (#A) more basis fns

• Duplicate basis functions for each action:

– φi
a1 (s) = φi(s) if a1 taken, 0 otherwise,

– φi
a2 (s) = φi(s) if a2 taken, 0 otherwise,etc

• For each (s,a,r,s’) sample:

ΦΦ−ΦΦ= PB TT

)'()()()(
)'(

ssssBB
s

j

a

i

a

j

a

iijij

π
φφφφ −+←

Running LSPI

• Start w/random weights (= random policy)

• Collect a database of (s,a,r,s’) experiences

• Repeat

– Evaluate current policy against database

• Run LSPI to generate new set of weights

• New weights imply new policy

– Replace current weights with new weights

• Until convergence (or e weight change)

Results: Bicycle Riding

• Randlov and Alstrom simulator

• Watch random controller operate bike

• Collect ~40,000 (s,a,r,s’) samples

• Pick 20 simple basis functions (×5 actions)

• Make 5-10 passes over data (PI steps)

• Result:

Controller that balances and rides to goal

Bicycle Trajectories Q-learning Results

7

LSPI Robustness So, what’s the bad news?

• (k (#A))2 can sometimes be big

– Lots of storage

– Matrix inversion can be expensive

• Linear VFA is “weak”

• Bicycle needed “shaping” rewards

• Still haven’t solved

– Feature selection (issue for all machine learning,

but RL seems even more sensitive)

– Exploration vs. Exploitation

Conclusion

• Reinforcement learning combines decision theory with

machine learning techniques

• Key idea: Avoid covering the large state space imposed by

adherence to Markov property

• Key challenges:

– Stability

– Non-linearity introduced by max in Bellman equation

– Feature/model selection

– Exploration vs. Exploitation

• Many methods exist for RL

• LSTD/LSPI represent one family of methods closely tied to

linear regression

