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Decision Theory

and

Markov Decision Processes

(MDPs)

Ron Parr

CPS 271

The Winding Path to RL

• Decision Theory

• Markov Decision Processes

• Reinforcement Learning

• Descriptive theory of optimal behavior

• Mathematical/Algorithmic realization of 

Decision Theory

• Application of learning techniques to 

challenges of MDPs with numerous or 

unknown parameters

Covered in First Lecture

• Decision Theory

• MDPs

• Algorithms for MDPs
– Value Determination

– Optimal Policy Selection
• Value Iteration

• Policy Iteration

• Linear Programming

Decision Theory

• Asked by economists to study consumer behavior

• Asked by MBAs to maximize profit

• Asked by leaders to allocate resources

• Asked in OR to maximize efficiency of operations

• Asked in AI to model intelligence

• Asked (sort of) by any intelligent person every day

What does it mean to make an optimal decision?

Utility Functions

• A utility function is a mapping from world 

states to real numbers

• Also called a value function

• Rational or optimal behavior is typically 

viewed as maximizing expected utility:

∑
s

a

sUasP )()|(max

a = actions, s = states

Are Utility Functions Natural?

• Some have argued that people don’t really have 

utility functions

• What is the utility of the current state?

• What was your utility at 8:00pm last night?

• Utility elicitation is difficult problem

• It’s easy to communicate preferences

• Given a plausible set of assumptions about 

preferences, must exist consistent utility function 

(More precise statement of this is a theorem.)
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Swept under the today

• Utility of money (assumed 1:1)

• How to determine costs/utilities

• How to determine probabilities

Playing a Game Show

• Assume series of questions

– Increasing difficulty

– Increasing payoff

• Choice:

– Accept accumulated earnings and quit

– Continue and risk losing everything

• “Who wants to be a millionaire?”

State Representation

(simplified game)

Start

$100

1 correct

$1,000

2 correct

$10,000

3 correct

$50,000

$0 $0 $0 $0

$100 $1,100 $11,100

$61,100

Making Optimal Decisions

• Work backwards from future to present

• Consider $50,000 question

– Suppose P(correct) = 1/10

– V(stop)=$11,100

– V(continue) = 0.9*$0 + 0.1*$61.1K = $6.11K

• Optimal decision continues

Working Recursively

$0 $0 $0 $0

$100 $1,100 $11,100

1/10
X

V=$11.1K

1/2

X

V=$5,555

3/4

V=$4,166

X

V=$3,749

9/10

Decision Theory Review

• Provides theory of optimal decisions

• Principle of maximizing utility

• Easy for small, tree structured spaces with

– Known utilities

– Known probabilities
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Covered in Today

• Decision Theory

• MDPs

• Algorithms for MDPs
– Value Determination

– Optimal Policy Selection
• Value Iteration

• Policy Iteration

• Linear Programming

Dealing with Loops

$0 $0 $0 $0

$100 $1,100 $11,100

1/101/23/4

Suppose you can pay $1000 (from any losing state) to play again

$-1000

9/10

From Policies to Linear Systems

• Suppose we always pay until we win.

• What is value of following this policy?

)61100(10.0))(1000(90.0)(

)(50.0))(1000(50.0)(

)(75.0))(1000(25.0)(

)(90.0))(1000(10.0)(
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Return to Start Continue

And the solution is…

1/101/23/4

$-1000

V=$34.43KV=$32.95KV=$32.58KV=$32.47K

w/o

cheat

9/10

Is this optimal?

How do we find the optimal policy?

V=$11.11KV=$5,555V=$4,166V=$3,749

The MDP Framework

• State space: S

• Action space: A

• Transition function:  P

• Reward function: R 

• Discount factor: 

• Policy:  

γ

as →π )(

Objective:  Maximize expected, discounted return 

(decision theoretic optimal behavior)

Applications of MDPs

• AI/Computer Science

– Robotic control

(Koenig & Simmons, Thrun et al., Kaelbling et al.)

– Air Campaign Planning (Meuleau et al.)

– Elevator Control (Barto & Crites)

– Computation Scheduling (Zilberstein et al.)

– Control and Automation (Moore et al.)

– Spoken dialogue management (Singh et al.)

– Cellular channel allocation (Singh & Bertsekas)
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Applications of MDPs

• Economics/Operations Research

– Fleet maintenance (Howard, Rust)

– Road maintenance (Golabi et al.)

– Packet Retransmission (Feinberg et al.)

– Nuclear plant management  (Rothwell & Rust)

Applications of MDPs

• EE/Control

– Missile defense (Bertsekas et al.)

– Inventory management (Van Roy et al.)

– Football play selection (Patek & Bertsekas)

• Agriculture

– Herd management (Kristensen, Toft)

The Markov Assumption

• Let St be a random variable for the state at time t

• P(St|At-1St-1,…,A0S0) = P(St|At-1St-1)

• Markov is special kind of conditional independence

• Future is independent of past given current state

Understanding Discounting

• Mathematical motivation
– Keeps values bounded

– What if I promise you $0.01 every day you visit me?

• Economic motivation
– Discount comes from inflation

– Promise of $1.00 in future is worth $0.99 today

• Probability of dying
– Suppose e probability of dying at each decision interval

– Transition w/prob ε to state with value 0

– Equivalent to 1- ε discount factor

Discounting in Practice

• Often chosen unrealistically low

– Faster convergence

– Slightly myopic policies

• Can reformulate most algs for avg reward

– Mathematically uglier

– Somewhat slower run time

Covered Today

• Decision Theory

• MDPs

• Algorithms for MDPs
– Value Determination

– Optimal Policy Selection
• Value Iteration

• Policy Iteration

• Linear Programming
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Value Determination
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Bellman Equation

S1

S2

S3

0.4

0.6

R=1
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Determine the value of each state under policy p 

Matrix Form
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RVPV +γ= π

How do we solve this system?

Solving for Values

RVPV += πγ

For moderate numbers of states we can solve this system exacty:

RPIV
1)( −−= πγ

Guaranteed invertible because

has spectral radius <1
πγP

Iteratively Solving for Values

RVPV += πγ

For larger numbers of states we can solve this system indirectly:

RVPV +=+ ii

πγ1

Guaranteed convergent because

has spectral radius <1
πγP

Establishing Convergence

• Eigenvalue analysis

• Monotonicity

– Assume all values start pessimistic

– One value must always increase

– Can never overestimate

• Contraction analysis…

Contraction Analysis

• Define maximum norm

• Consider V1 and V2

• WLOG say

ii
VV max=

∞

ε
r

+≤ 21 VV

ε=−
∞21 VV

(Vector of all ε’s)
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Contraction Analysis Contd.

• At next iteration for V2:

• For V1

• Conclude:

εγγεγγεγγ
rrr

++=++=++≤+= 2221'1
)()( PVRPPVRVPRVPRV

2'2
PVRV γ+=

γε≤−
∞

'1'2
VV

Distribute

Importance of Contraction

• Any two value functions get closer

• True value function V* is a fixed point

• Max norm distance from V* decreases 

exponentially quickly with iterations

εγε nn
VVVV ≤−→=−

∞∞

*)(*)0(

NB:  (Superscripts) indicate iterations here

Iterative Policy Evaluation

1/101/23/4

$-1000

9/10

$111,100

0.00 0.00 0.00 0.00

-100.00 -250.00 -500.00 5210.00

-335.00 -650.00 2055.00 4908.00

-718.50 1207.50 1892.50 9908.50

914.90 989.75 1595.00 4563.35

882.26 1174.97 2239.12 6033.41

Iterations

Iterations Continued

iteration V(S0) V(S1) V(S2) V(S3)

0 0.0 0.0 0.0 0.0

1 -100.0 -250.0 -500.0 5210.0

2 -335.0 -650.0 2055.0 4908.0

3 -718.5 1207.5 1892.5 9908.5

4 914.9 989.8 1595.0 4563.4

5 882.3 1175.0 2239.1 6033.4

10 2604.5 3166.7 4158.8 7241.8

20 5994.8 6454.5 7356.0 10.32K

200 29.73K 29.25K 29.57K 31.61K

2000 32.47K 32.58K 32.95K 34.43K

Note:  Slow convergence because γ=1

Covered Today

• Decision Theory

• MDPs

• Algorithms for MDPs
– Value Determination

– Optimal Policy Selection
• Value Iteration

• Policy Iteration

• Linear Programming

Finding Good Policies

Suppose an expert told you the “value” of each state:

V(S1) = 10 V(S2) = 5

S1

S2

Action 1

0.5

0.5

S1

S2

Action 2

0.7

0.3
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Improving Policies

• How do we get the optimal policy?

• Take the optimal action in every state

• Fixed point equation with choices:

∑ +=
'

)'(*),|'(),(max)(*
sa

sVassPasRsV γ

Decision theoretic optimal choice given V*

Value Iteration

∑ +=+

'
)'(),|'(),(max)(1

sa
sVassPasRsV ii γ

•Called value iteration or simply successive approximation

•Same as value determination, but we can change actions

•Convergence:

• Can’t do eigenvalue analysis (not linear)

• Still monotonic

• Still a contraction in max norm (exercise)

• Converges exponentially quickly

We can’t solve the system directly with a max in the equation

Can we solve it by iteration?

Optimality

• VI converges to optimal policy

• Why?

• Optimal policy is stationary

• Why?

Covered Today

• Decision Theory

• MDPs

• Algorithms for MDPs
– Value Determination

– Optimal Policy Selection
• Value Iteration

• Policy Iteration

• Linear Programming

Greedy Policy Construction

Pick action with highest expected future value:

∑+=
'

)'(),|'(),(maxarg)(
sa

sVassPasRs γπ

Expectation over

next-state values

)(greedy V=π

Bootstrapping:  Policy Iteration

Guaranteed to find optimal policy

Usually takes very small number of iterations

Computing the value functions is the expensive part

Guess π=π0 Repeat until

policy doesn’t

change

Idea:  Greedy selection is useful even with suboptimal V

Vπ = value of acting on π

(solve linear system)

π←greedy(Vπ)
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Comparing VI and PI

• VI
– Value changes at every step

– Policy may change at every step

– Many cheap iterations

• PI
– Alternates policy/value udpates

– Solves for value of each policy exactly

– Fewer, slower iterations (need to invert matrix)

• Convergence
– Both are contractions in max norm

– PI is shockingly fast in practice (why?)

Linear Programming in 1 Slide

• Minimize:

• Subject to:

• Can be solved in weakly polynomial time

• Arguably most common and important 

optimization technique in history

xc
T

bAx ≥

Linear Programming

Issue:  Turn the non-linear max into a collection of linear constraints

∑+=
'

)'(),|'(max),()(
sa

sVassPasRsV γ

∑+≥∀
'

)'(),|'(),()(:,
s

sVassPasRsVas γ

MINIMIZE: ∑
s

sV )(

Weakly polynomial; slower than PI in practice.

Optimal action has

tight constraints

MDP Difficulties  → RL

• MDP operate at the level of states

– States = atomic events

– We usually have exponentially (infinitely) many of these

• We assumes P and R are known

• Machine learning to the rescue!

– Infer P and R (implicitly or explicitly from data)

– Generalize from small number of states/policies


