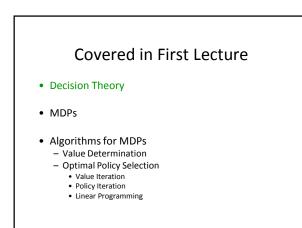
Decision Theory and Markov Decision Processes (MDPs)

> Ron Parr CPS 271

# The Winding Path to RL

- Decision Theory
- Markov Decision Processes
- Reinforcement Learning
- Descriptive theory of optimal behavior
- Mathematical/Algorithmic realization of Decision Theory
- Application of learning techniques to challenges of MDPs with numerous or unknown parameters



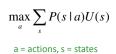
## **Decision Theory**

#### What does it mean to make an optimal decision?

- Asked by economists to study consumer behavior
- Asked by MBAs to maximize profit
- Asked by leaders to allocate resources
- Asked in OR to maximize efficiency of operations
- Asked in AI to model intelligence
- Asked (sort of) by any intelligent person every day

# **Utility Functions**

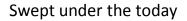
- A *utility function* is a mapping from world states to real numbers
- Also called a value function
- Rational or optimal behavior is typically viewed as maximizing expected utility:



## Are Utility Functions Natural?

- Some have argued that people don't really have utility functions
  - What is the utility of the current state?
  - What was your utility at 8:00pm last night?
  - Utility elicitation is difficult problem
- It's easy to communicate preferences
- Given a plausible set of assumptions about preferences, must exist consistent utility function

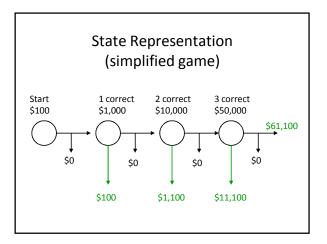
(More precise statement of this is a theorem.)

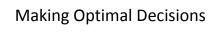


- Utility of money (assumed 1:1)
- How to determine costs/utilities
- How to determine probabilities

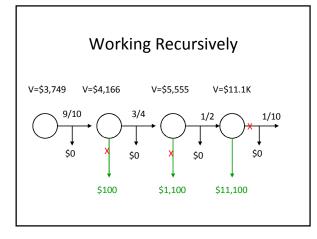


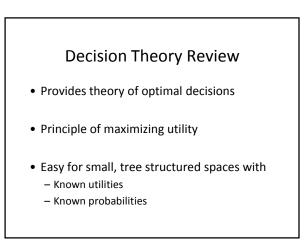
- Assume series of questions
  - Increasing difficulty
  - Increasing payoff
- Choice:
  - Accept accumulated earnings and quit
  - Continue and risk losing everything
- "Who wants to be a millionaire?"

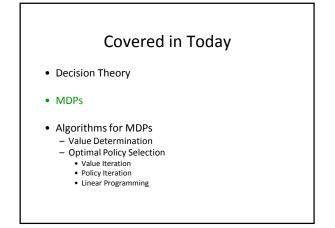


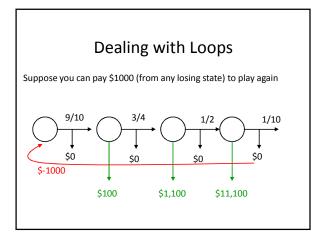


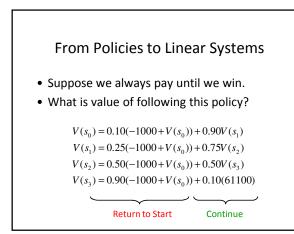
- Work backwards from future to present
- Consider \$50,000 question
  - Suppose P(correct) = 1/10
  - V(stop)=\$11,100
  - V(continue) = 0.9\*\$0 + 0.1\*\$61.1K = \$6.11K
- Optimal decision continues

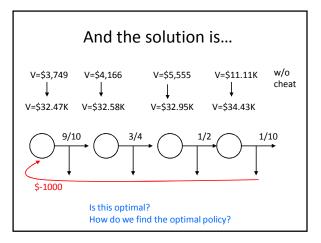












### The MDP Framework

- State space: S
- Action space: A
- Transition function: P
- Reward function: R
- Discount factor: γ
- Policy:  $\pi(s) \rightarrow a$

Objective: *Maximize expected, discounted return* (decision theoretic optimal behavior)

## Applications of MDPs

#### • AI/Computer Science

- Robotic control
- (Koenig & Simmons, Thrun et al., Kaelbling et al.)
- Air Campaign Planning (Meuleau et al.)
- Elevator Control (Barto & Crites)
- Computation Scheduling (Zilberstein et al.)
- Control and Automation (Moore et al.)
- Spoken dialogue management (Singh et al.)
- Cellular channel allocation (Singh & Bertsekas)

## Applications of MDPs

- Economics/Operations Research
  - Fleet maintenance (Howard, Rust)
  - Road maintenance (Golabi et al.)
  - Packet Retransmission (Feinberg et al.)
  - Nuclear plant management (Rothwell & Rust)

#### Applications of MDPs

#### EE/Control

- Missile defense (Bertsekas et al.)
- Inventory management (Van Roy et al.)
- Football play selection (Patek & Bertsekas)
- Agriculture
  - Herd management (Kristensen, Toft)



## The Markov Assumption

- Let  $\boldsymbol{S}_t$  be a random variable for the state at time t
- $P(S_t | A_{t-1}S_{t-1},...,A_0S_0) = P(S_t | A_{t-1}S_{t-1})$
- Markov is special kind of conditional independence
- Future is independent of past given current state

## Understanding Discounting

- Mathematical motivation
  - Keeps values bounded
  - What if I promise you \$0.01 every day you visit me?
- Economic motivation
  - Discount comes from inflation
  - Promise of \$1.00 in future is worth \$0.99 today

#### • Probability of dying

- Suppose e probability of dying at each decision interval
- Transition w/prob  $\epsilon$  to state with value 0
- Equivalent to 1-  $\epsilon$  discount factor

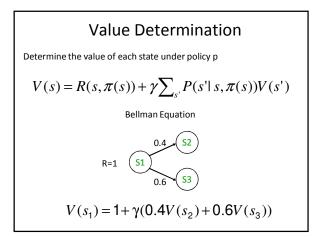
## **Discounting in Practice**

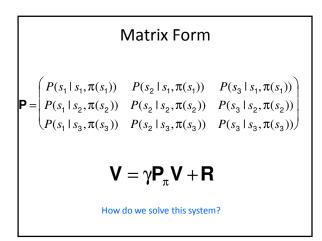
- Often chosen unrealistically low
  - Faster convergence
  - Slightly myopic policies
- Can reformulate most algs for avg reward

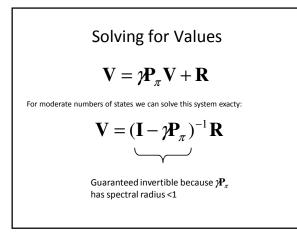
   Mathematically uglier
  - Somewhat slower run time

# Covered Today

- Decision Theory
- MDPs
- Algorithms for MDPs
  - Value DeterminationOptimal Policy Selection
  - Value Iteration
    - Policy IterationLinear Programming







Iteratively Solving for Values

$$\mathbf{V} = \gamma \mathbf{P}_{\pi} \mathbf{V} + \mathbf{R}$$

For larger numbers of states we can solve this system indirectly:

$$\mathbf{V}^{i+1} = \boldsymbol{\gamma} \mathbf{P}_{\pi} \mathbf{V}^{i} + \mathbf{R}$$

Guaranteed convergent because  $\gamma P_{\pi}$  has spectral radius <1

## Establishing Convergence

- Eigenvalue analysis
- Monotonicity
  - Assume all values start pessimistic
  - One value must always increase
  - Can never overestimate
- Contraction analysis...

## **Contraction Analysis**

• Define maximum norm

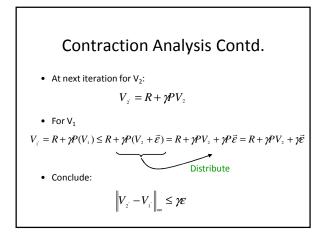
$$\|V\|_{\infty} = \max_{i} V_{i}$$

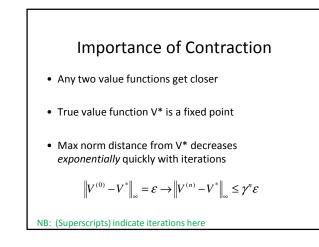
Consider V1 and V2

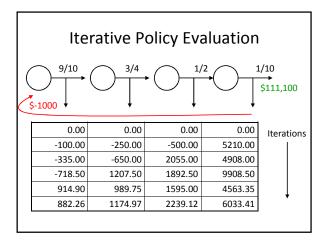
$$\left\|V_1 - V_2\right\|_{\infty} = \mathcal{E}$$

• WLOG say

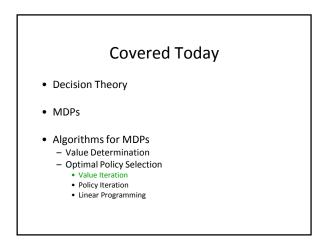
 $V_1 \leq V_2 + \vec{\mathcal{E}}$  (Vector of all  $\varepsilon$ 's)

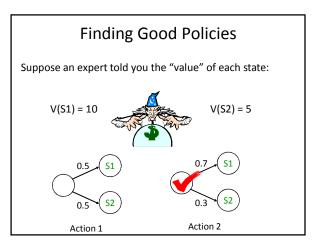


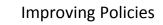




| iteration | V(S <sub>0</sub> ) | V(S <sub>1</sub> ) | V(S <sub>2</sub> ) | V(S <sub>3</sub> |
|-----------|--------------------|--------------------|--------------------|------------------|
| 0         | 0.0                | 0.0                | 0.0                | 0.0              |
| 1         | -100.0             | -250.0             | -500.0             | 5210.0           |
| 2         | -335.0             | -650.0             | 2055.0             | 4908.0           |
| 3         | -718.5             | 1207.5             | 1892.5             | 9908.5           |
| 4         | 914.9              | 989.8              | 1595.0             | 4563.4           |
| 5         | 882.3              | 1175.0             | 2239.1             | 6033.4           |
| 10        | 2604.5             | 3166.7             | 4158.8             | 7241.8           |
| 20        | 5994.8             | 6454.5             | 7356.0             | 10.32            |
| 200       | 29.73K             | 29.25K             | 29.57K             | 31.61            |
| 2000      | 32.47K             | 32.58K             | 32.95K             | 34.43k           |







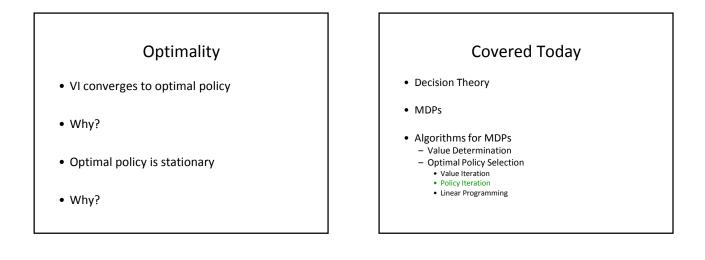
- How do we get the optimal policy?
- Take the optimal action in every state
- Fixed point equation with choices:

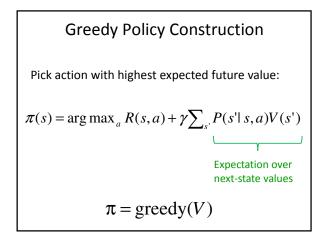
$$V^{*}(s) = \max_{a} \sum_{s'} R(s, a) + \gamma P(s'|s, a) V^{*}(s')$$

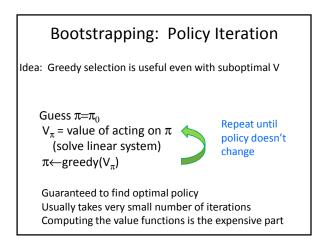
Decision theoretic optimal choice given V\*

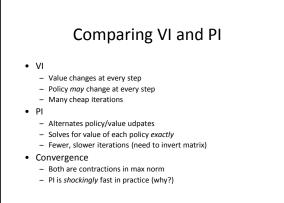
Value IterationWe can't solve the system directly with a max in the equation  
Can we solve it by iteration?V 
$$^{i+1}(s) = \max_{a} \sum_{s'} R(s, a) + \mathcal{P}(s'|s, a) V^{i}(s')$$
Called value iteration or simply successive approximation  
•Same as value determination, but we can change actions•Convergence:•Convergence:•Can't do eigenvalue analysis (not linear)•Still monotonic

- Still a contraction in max norm (exercise)
- Converges exponentially quickly



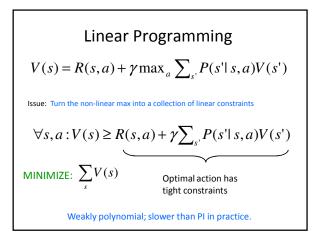


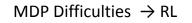




## Linear Programming in 1 Slide

- Minimize:  $\mathbf{c}^T \mathbf{x}$
- Subject to:  $Ax \ge b$
- Can be solved in weakly polynomial time
- Arguably most common and important optimization technique in history





- MDP operate at the level of *states* States = atomic events
  - We usually have exponentially (infinitely) many of these
- We assumes P and R are known
- Machine learning to the rescue!
  Infer P and R (implicitly or explicitly from data)
  - Generalize from small number of states/policies