Decision Theory

and The Winding Path to RL
Markov Decision Processes
* Decision Theory ¢ Descriptive theory of optimal behavior
(MDPs)
* Markov Decision Processes ¢ Mathematical/Algorithmic realization of

Decision Theory

Ron Parr « Reinforcement Learning « Application of learning techniques to
challenges of MDPs with numerous or
CPS 271 unknown parameters
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- Decision Theory
Covered in First Lecture

What does it mean to make an optimal decision?
e Decision Theory

¢ Asked by economists to study consumer behavior
Asked by MBAs to maximize profit

Asked by leaders to allocate resources

Asked in OR to maximize efficiency of operations

e MDPs

L]

L]

e Algorithms for MDPs
— Value Determination
— Optimal Policy Selection
* Value Iteration
* Policy Iteration
e Linear Programming

Asked in Al to model intelligence

L]

Asked (sort of) by any intelligent person every day

Are Utility Functions Natural?
Utility Functions

e Some have argued that people don’t really have

* A utility function is a mapping from world utility functions

states to real numbers ¢ Whatis the utility of the current state?
. * What was your utility at 8:00pm last night?
* Also called a value function o Utility elicitation is difficult problem

¢ Rational or optimal behavior is typically
viewed as maximizing expected utility:

It's easy to communicate preferences

Given a plausible set of assumptions about
mflx Z P(s1a)U(s) preferences, must exist consistent utility function
5

a = actions, s = states (More precise statement of this is a theorem.)




Swept under the today

¢ Utility of money (assumed 1:1)
e How to determine costs/utilities

¢ How to determine probabilities

Playing a Game Show

e Assume series of questions
— Increasing difficulty
— Increasing payoff
¢ Choice:
— Accept accumulated earnings and quit
— Continue and risk losing everything

¢ “Who wants to be a millionaire?”

State Representation
(simplified game)

Start 1 correct 2 correct 3 correct
$100 $1,000 $10,000 $50,000
Q /7 $61,100
$0 ) $0 $0
$100 $1,100 $11,100

Making Optimal Decisions
e Work backwards from future to present

e Consider $50,000 question
— Suppose P(correct) = 1/10
— V(stop)=$11,100
— V(continue)=0.9*$0 + 0.1*$61.1K = $6.11K

e Optimal decision continues

Working Recursively

V=$3,749  V=$4,166 V=$5,555 V=$11.1K

Q 9/10 3/4 1/2 N\ 1/10
$0 $0 $0 $0

$100 $1,100 $11,100

Decision Theory Review

¢ Provides theory of optimal decisions
¢ Principle of maximizing utility

¢ Easy for small, tree structured spaces with
— Known utilities
— Known probabilities




Covered in Today

e Decision Theory
e MDPs

o Algorithms for MDPs
— Value Determination
— Optimal Policy Selection
¢ Value Iteration
* Policy Iteration
e Linear Programming

Dealing with Loops

Suppose you can pay $1000 (from any losing state) to play again

Q 9/10 3/4 12 /7N 110

$£ s<la s<la \\f $£
$-1000 l l l

$100 $1,100 $11,100

From Policies to Linear Systems

e Suppose we always pay until we win.
e What is value of following this policy?

V(s,) = 0.10(=1000+V (s,)) +0.90V (s,)
V(s,) =0.25(=1000+V (s,))+0.75V (s,)
V(s,) = 0.50(=1000+V (s5,))+0.50V (s;)
V(s) =0.90(~1000+V (s,)) +0.10(61100)

Return to Start Continue

And the solution is...

V=$3,749  V=54,166 V=$5,555 V=$11.11K  W/o

l l l 1 cheat

V=$32.47K  V=$32.58K V=$32.95K V=$34.43K

Q 9/10 O 3/4 O 1/2 Q 1/10
A hdhd

$-1000

Is this optimal?
How do we find the optimal policy?

The MDP Framework

e State space: S
e Action space: A

Transition function: P

Reward function: R

Discount factor: Y

Policy: m(s) = a

Objective: Maximize expected, discounted return
(decision theoretic optimal behavior)

Applications of MDPs

¢ Al/Computer Science

— Robotic control
(Koenig & Simmons, Thrun et al., Kaelbling et al.)

— Air Campaign Planning (Meuleau et al.)

— Elevator Control (Barto & Crites)

— Computation Scheduling (Zilberstein et al.)

— Controland Automation (Moore et al.)

— Spoken dialogue management (Singh et al.)

— Cellular channel allocation (Singh & Bertsekas)




Applications of MDPs

Economics/Operations Research

— Fleet maintenance (Howard, Rust)

— Road maintenance (Golabi et al.)

— Packet Retransmission (Feinberg et al.)

— Nuclear plant management (Rothwell & Rust)

Applications of MDPs

e EE/Control

— Missile defense (Bertsekas et al.)

— Inventory management (Van Roy et al.)

— Football play selection (Patek & Bertsekas)
e Agriculture

— Herd management (Kristensen, Toft)

The Markov Assumption

Let S, be a random variable for the state at time t
P(S¢] Ar1Se1r-A0So) = PS¢ Ar1Si1)
Markov is special kind of conditional independence

Future is independent of past given current state

Understanding Discounting

¢ Mathematical motivation
— Keeps values bounded
— What if | promise you $0.01 every day you visit me?

e Economic motivation
— Discount comes from inflation
— Promise of $1.00 in future is worth $0.99 today

e Probability of dying
— Suppose e probability of dying at each decision interval
— Transition w/prob ¢ to state with value 0
— Equivalent to 1- € discount factor

Discounting in Practice

¢ Often chosen unrealistically low
— Faster convergence
— Slightly myopic policies

¢ Can reformulate most algs for avg reward
— Mathematically uglier
— Somewhat slower run time

Covered Today
e Decision Theory
e MDPs

e Algorithms for MDPs
— Value Determination
— Optimal Policy Selection
* Value Iteration
* Policy Iteration
e Linear Programming




Value Determination

Determine the value of each state under policy p

V(s)=R(s,7(s))+ 72“'1)(3" s, (s)V (s')

Bellman Equation

05 ()
- @
O

V(s,) =1+7(0.4V (s,) +0.6V(s,))

Matrix Form

( P(s,15,.70(s))  P(s,15,.7(s))  P(s, |s1,n(s1)))
P :LP@ I55,70(s,))  P(sy15,,7(s,)) P(ss] sz,n(sz))J
P(s,155,T(85))  P(5,184,7(s5))  P(s5155,7(s,))

V=1P.V+R

How do we solve this system?

Solving for Values

V= V+R

For moderate numbers of states we can solve this system exacty:

V=1-/,)'R
H_/

Guaranteed invertible because }P,
has spectral radius <1

Iteratively Solving for Values

V=®,V+R

For larger numbers of states we can solve this system indirectly:

V=P V +R

Guaranteed convergent because P,
has spectral radius <1

Establishing Convergence

¢ Eigenvalue analysis

e Monotonicity

— Assume all values start pessimistic
— One value must always increase
— Can never overestimate

¢ Contraction analysis...

Contraction Analysis
¢ Define maximum norm
V], = max,,
e Consider V1 and V2
Vi-vil. =

e WLOG say

Vl < V2 +& (Vector of all €’s)




Contraction Analysis Contd.
¢ At nextiteration for V,:
V, =R+ )PV,

e ForV,
V.=R+WPV)SR+WPV,+E)=R+ PV, + PE=R+ )PV, +)E

'M
Distribute

e Conclude:

V.-V,

<r

Importance of Contraction

¢ Any two value functions get closer
e True value function V* is a fixed point

e Max norm distance from V* decreases
exponentially quickly with iterations

*

oy

= HV(") -V

<y'e

NB: (Superscripts) indicate iterations here

Iterative Policy Evaluation

OT-O7- 070 o

0.00 0.00 0.00 0.00| |terations
-100.00|  -250.00|  -500.00|  5210.00
-335.00|  -650.00|  2055.00|  4908.00
-71850|  1207.50|  1892.50|  9908.50
914.90 989.75|  1595.00|  4563.35
882.26| 117497  2239.12|  6033.41

[terations Continued

iteration V(So) V(s,) V(S,) V(S;)
0 0.0 0.0 0.0 0.0

1 -100.0 -250.0 -500.0 5210.0

2 -335.0 -650.0 2055.0 4908.0

3 -718.5 1207.5 1892.5 9908.5

4 914.9 989.8 1595.0 4563.4

5 882.3 1175.0 2239.1 6033.4

10 2604.5 3166.7 4158.8 72418
20 5994.8 6454.5 7356.0 10.32K
200 29.73K 29.25K 29.57K 31.61K
2000 32.47K 32.58K 32.95K 34.43K

Note: Slow convergence because y=1

Covered Today

e Decision Theory
e MDPs

o Algorithms for MDPs
— Value Determination
— Optimal Policy Selection
* Value Iteration
* Policy Iteration
e Linear Programming

Finding Good Policies

Suppose an expert told you the “value” of each state:

V(S1) = 10 V(S2)=5

Action 1 Action 2




Improving Policies

¢ How do we get the optimal policy?
e Take the optimal action in every state
¢ Fixed point equation with choices:

VE(s)=max, ) R(s,a)+ P(s'l's,a)V *(s)

Decision theoretic optimal choice given V*

Optimality
¢ VI converges to optimal policy
e Why?

e Optimal policy is stationary

e Why?

Value Iteration

We can’t solve the system directly with a max in the equation
Can we solve it by iteration?

Vi(s)=max, Y R(s,a)+P(s'l's,a)V'(s')

eCalled value iteration or simply successive approximation
eSame as value determination, but we can change actions

eConvergence:
¢ Can’t do eigenvalue analysis (not linear)
o Still monotonic
o Still a contraction in max norm (exercise)
e Converges exponentially quickly

Covered Today
e Decision Theory
e MDPs

o Algorithms for MDPs
— Value Determination
— Optimal Policy Selection
¢ Value Iteration
* Policy Iteration
e Linear Programming

Greedy Policy Construction
Pick action with highest expected future value:

7(s)=argmax, R(s,a)+yY. P(s'ls,a)V (s
\—Y—)

Expectation over
next-state values

7t = greedy(V)

Bootstrapping: Policy Iteration

Idea: Greedy selection is useful even with suboptimal V

Guess =T, )
. Repeat until
V, = value of actingon & . ,
ve i policy doesn’t
(solve linear system) change
T—greedy(V,)

Guaranteed to find optimal policy
Usually takes very small number of iterations
Computing the value functions is the expensive part




Comparing VI and PI

— Value changes at every step
— Policy may change at every step
— Many cheap iterations

— Alternates policy/value udpates
Solves for value of each policy exactly

— Fewer, slower iterations (need to invert matrix)
e Convergence

— Both are contractions in max norm

— Plis shockingly fast in practice (why?)

Linear Programming in 1 Slide
¢ Minimize: ¢'x
e Subjectto: Ax>b

¢ Can be solved in weakly polynomial time

¢ Arguably most common and important
optimization technique in history

Linear Programming

— ' '
V(s)=R(s,a)+ymax, ) P(s'ls,a)V(s)
Issue: Turn the non-linear max into a collection of linear constraints

Vs,a:V(s)=R(s,a)+ 7ZS,P(S'I s,a)V(s")

— _/
~—

MINIMIZE: ZV(S) Optimal action has
s tight constraints

Weakly polynomial; slower than Pl in practice.

MDP Difficulties = RL

o MDP operate at the level of states
— States = atomic events
— We usually have exponentially (infinitely) many of these

e We assumes P and R are known

e Machine learning to the rescue!
— Infer P and R (implicitly or explicitly from data)
— Generalize from small number of states/policies




