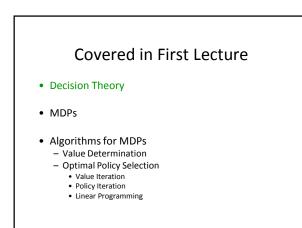
Decision Theory and Markov Decision Processes (MDPs)

> Ron Parr CPS 271

The Winding Path to RL

- Decision Theory
- Markov Decision Processes
- Reinforcement Learning
- Descriptive theory of optimal behavior
- Mathematical/Algorithmic realization of Decision Theory
- Application of learning techniques to challenges of MDPs with numerous or unknown parameters



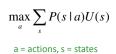
Decision Theory

What does it mean to make an optimal decision?

- Asked by economists to study consumer behavior
- Asked by MBAs to maximize profit
- Asked by leaders to allocate resources
- Asked in OR to maximize efficiency of operations
- Asked in AI to model intelligence
- Asked (sort of) by any intelligent person every day

Utility Functions

- A *utility function* is a mapping from world states to real numbers
- Also called a value function
- Rational or optimal behavior is typically viewed as maximizing expected utility:



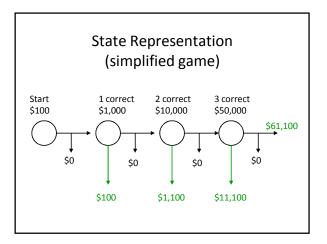
Are Utility Functions Natural?

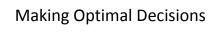
- Some have argued that people don't really have utility functions
 - What is the utility of the current state?
 - What was your utility at 8:00pm last night?
 - Utility elicitation is difficult problem
- It's easy to communicate preferences
- Given a plausible set of assumptions about preferences, must exist consistent utility function

(More precise statement of this is a theorem.)

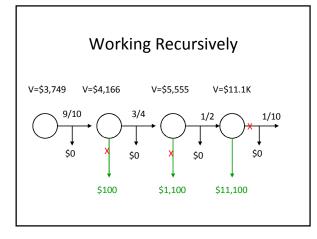
- Utility of money (assumed 1:1)
- How to determine costs/utilities
- How to determine probabilities

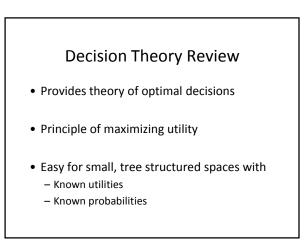
- Assume series of questions
 - Increasing difficulty
 - Increasing payoff
- Choice:
 - Accept accumulated earnings and quit
 - Continue and risk losing everything
- "Who wants to be a millionaire?"

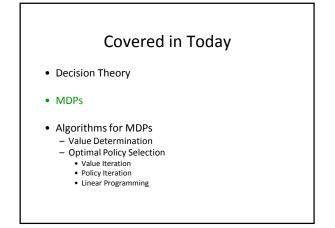


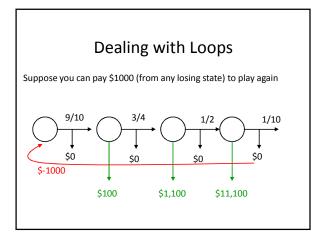


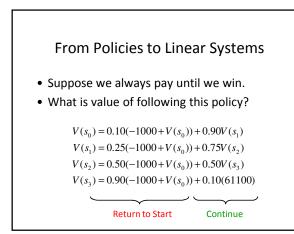
- Work backwards from future to present
- Consider \$50,000 question
 - Suppose P(correct) = 1/10
 - V(stop)=\$11,100
 - V(continue) = 0.9*\$0 + 0.1*\$61.1K = \$6.11K
- Optimal decision continues

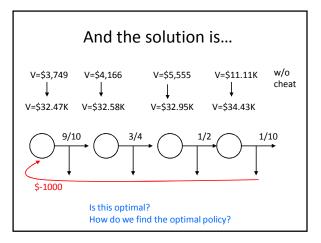












The MDP Framework

- State space: S
- Action space: A
- Transition function: P
- Reward function: R
- Discount factor: γ
- Policy: $\pi(s) \rightarrow a$

Objective: *Maximize expected, discounted return* (decision theoretic optimal behavior)

Applications of MDPs

• AI/Computer Science

- Robotic control
- (Koenig & Simmons, Thrun et al., Kaelbling et al.)
- Air Campaign Planning (Meuleau et al.)
- Elevator Control (Barto & Crites)
- Computation Scheduling (Zilberstein et al.)
- Control and Automation (Moore et al.)
- Spoken dialogue management (Singh et al.)
- Cellular channel allocation (Singh & Bertsekas)

Applications of MDPs

- Economics/Operations Research
 - Fleet maintenance (Howard, Rust)
 - Road maintenance (Golabi et al.)
 - Packet Retransmission (Feinberg et al.)
 - Nuclear plant management (Rothwell & Rust)

Applications of MDPs

EE/Control

- Missile defense (Bertsekas et al.)
- Inventory management (Van Roy et al.)
- Football play selection (Patek & Bertsekas)
- Agriculture
 - Herd management (Kristensen, Toft)

The Markov Assumption

- Let \boldsymbol{S}_t be a random variable for the state at time t
- $P(S_t | A_{t-1}S_{t-1},...,A_0S_0) = P(S_t | A_{t-1}S_{t-1})$
- Markov is special kind of conditional independence
- Future is independent of past given current state

Understanding Discounting

- Mathematical motivation
 - Keeps values bounded
 - What if I promise you \$0.01 every day you visit me?
- Economic motivation
 - Discount comes from inflation
 - Promise of \$1.00 in future is worth \$0.99 today

• Probability of dying

- Suppose e probability of dying at each decision interval
- Transition w/prob ϵ to state with value 0
- Equivalent to 1- ϵ discount factor

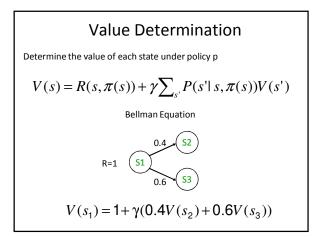
Discounting in Practice

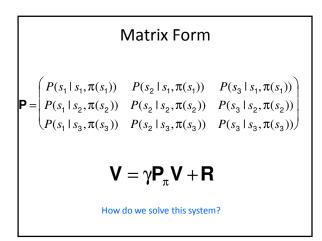
- Often chosen unrealistically low
 - Faster convergence
 - Slightly myopic policies
- Can reformulate most algs for avg reward

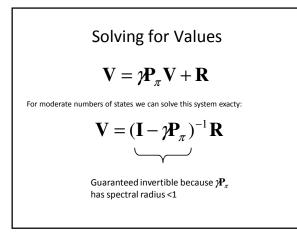
 Mathematically uglier
 - Somewhat slower run time

Covered Today

- Decision Theory
- MDPs
- Algorithms for MDPs
 - Value DeterminationOptimal Policy Selection
 - Value Iteration
 - Policy IterationLinear Programming







Iteratively Solving for Values

$$\mathbf{V} = \gamma \mathbf{P}_{\pi} \mathbf{V} + \mathbf{R}$$

For larger numbers of states we can solve this system indirectly:

$$\mathbf{V}^{i+1} = \boldsymbol{\gamma} \mathbf{P}_{\pi} \mathbf{V}^{i} + \mathbf{R}$$

Guaranteed convergent because γP_{π} has spectral radius <1

Establishing Convergence

- Eigenvalue analysis
- Monotonicity
 - Assume all values start pessimistic
 - One value must always increase
 - Can never overestimate
- Contraction analysis...

Contraction Analysis

• Define maximum norm

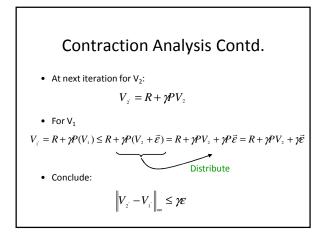
$$\|V\|_{\infty} = \max_{i} V_{i}$$

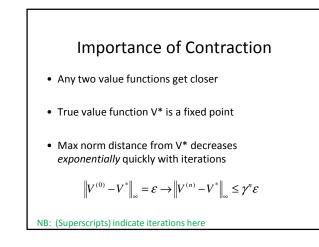
Consider V1 and V2

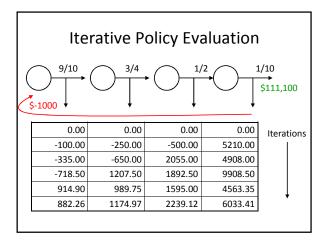
$$\left\|V_1 - V_2\right\|_{\infty} = \mathcal{E}$$

• WLOG say

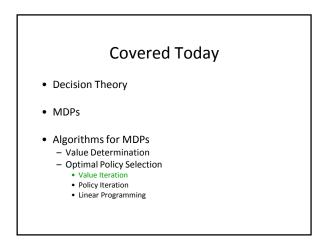
 $V_1 \leq V_2 + \vec{\mathcal{E}}$ (Vector of all ε 's)

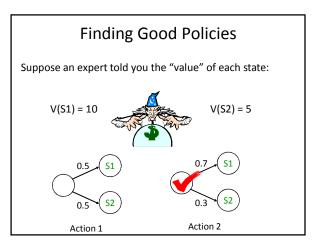


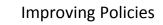




iteration	V(S ₀)	V(S ₁)	V(S ₂)	V(S ₃
0	0.0	0.0	0.0	0.0
1	-100.0	-250.0	-500.0	5210.0
2	-335.0	-650.0	2055.0	4908.0
3	-718.5	1207.5	1892.5	9908.5
4	914.9	989.8	1595.0	4563.4
5	882.3	1175.0	2239.1	6033.4
10	2604.5	3166.7	4158.8	7241.8
20	5994.8	6454.5	7356.0	10.32
200	29.73K	29.25K	29.57K	31.61
2000	32.47K	32.58K	32.95K	34.43k







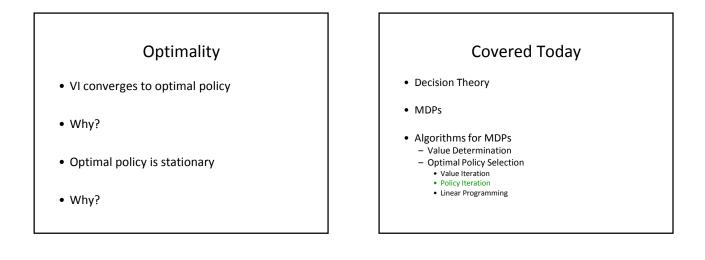
- How do we get the optimal policy?
- Take the optimal action in every state
- Fixed point equation with choices:

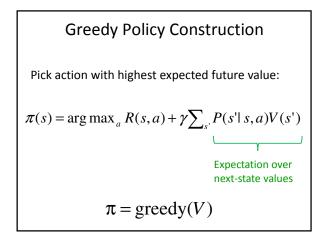
$$V^{*}(s) = \max_{a} \sum_{s'} R(s, a) + \gamma P(s'|s, a) V^{*}(s')$$

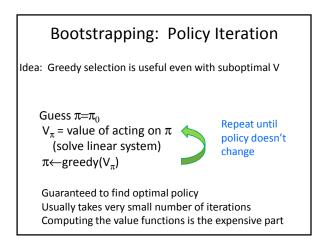
Decision theoretic optimal choice given V*

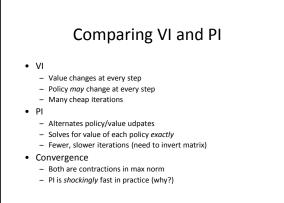
Value IterationWe can't solve the system directly with a max in the equation
Can we solve it by iteration?V
$$^{i+1}(s) = \max_{a} \sum_{s'} R(s, a) + \mathcal{P}(s'|s, a) V^{i}(s')$$
Called value iteration or simply successive approximation
•Same as value determination, but we can change actions•Convergence:•Convergence:•Can't do eigenvalue analysis (not linear)•Still monotonic

- Still a contraction in max norm (exercise)
- Converges exponentially quickly



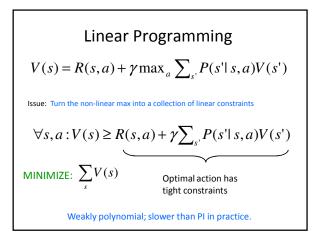


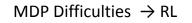




Linear Programming in 1 Slide

- Minimize: $\mathbf{c}^T \mathbf{x}$
- Subject to: $Ax \ge b$
- Can be solved in weakly polynomial time
- Arguably most common and important optimization technique in history





- MDP operate at the level of *states* States = atomic events
 - We usually have exponentially (infinitely) many of these
- We assumes P and R are known
- Machine learning to the rescue!
 Infer P and R (implicitly or explicitly from data)
 - Generalize from small number of states/policies