
1

Instance Based Methods I

CPS 271

Ron Parr

With content adapted from Lise Getoor 

(& Tom Dietterich, Ray Mooney, Andrew Moore) 

Parametric Methods

• Supervised learning

– Linear classifiers

– Non-linear classifiers, e.g., neural networks

• These methods are parametric

• Alternative:  Remember stuff

• AKA:  Case based or memory based

Overview

• Classification

– Nearest neighbor

– K-NN

• Regression

Example

• Flood risk

• Data set:

– GPS coordinates (features)

– Flood data for previous hundred years

• Task:  predict flood risk for new data points

Nearest Neighbor Algorithm

• Learning Algorithm:

– Store training examples

– “But that’s not learning…”

• Prediction Algorithm:

– To classify a new example x by finding the 

training example (xi,ti) that is nearest to x

– Guess the class t = ti

– Learning implicit in query mechanism

Decision Boundaries

• The nearest neighbor algorithm does not explicitly compute decision 
boundaries.  However, the decision boundaries form a subset of the 
Voronoi diagram for the training data.

• Each line segment is equidistant between two points of opposite classes.  The 
more examples that are stored, the more complex the decision boundaries can 
become.  
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Issues

• Noise

• Efficiency

– Use K-D Trees

– Still bad for high dimensions

• Distance measure (critical!)

– How to pick

– Questionably useful in high dimensions

• Irrelevant features

Dealing with Noise

• Consider k nearest neighbors (K-NN)

• Neighbors vote

x

k=1

k=6

common values for k: 3, 5

Picking Distance Measures

• No silver bullet

• Many rules of thumb

• Problem knowledge always helps

Distance:  Preprocessing

• What if features don’t have same range?

• Normalize feature values

– Scale to same range

– Usually –1,+1 scale

Distance Measures

• Two methods for computing similarity:

1. Explicit similarity measurement for each pair of objects

2. Similarity obtained indirectly based on vector of object attributes.

• Metric: d(i,j) is a metric iff

1. d(i,j) ≥ 0 for all i, j and d(i,j) = 0 iff i = j

2. d(i,j) = d(j,i) for all i and j

3. d(i,j) ≤ d(i,k) + d(k,i) for all i, j and k

Distance
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• Notation: n objects with p measurements
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• Most common distance metric is Euclidean distance:

• Makes sense in the case where the different 

measurements are commensurate; each is variable 

measured in the same units.  If the measurements are 

different, say length and weight, it is not clear.
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Standardization

When variables are not commensurate, we can standardize them by 

dividing by the sample standard deviation.   This makes them all 

equally important.
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The estimate for the standard deviation of xk :

where xk is the sample mean:
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But what about correlation???

Mahalanobis distance
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1. It automatically accounts for the scaling of the coordinate axes

2. It corrects for correlation between the different features 

Price:

1. The covariance matrices can be hard to determine accurately

2. The memory and time requirements grow quadratically rather than 

linearly with the number of features. 

Inverse covariance matrix

(compare with Gaussian)

Other Distance Metrics

• Minkowski or Lλ metric:

• Manhattan, city block or L1 metric:

• L∞
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Nearest Neighbor Summary

• Advantages

– Variable-sized hypothesis space

– Learning is extremely efficient (low d)

– Very flexible decision boundaries

• Disadvantages

– Distance function must be carefully chosen

– Irrelevant or correlated features must be eliminated

– Typically cannot handle more than 30 features

– Memory costs

– Expensive queries

Non-Parametric Regression Methods

• Carry over our intuitions from classificcation

• Look at some set of “neighbors”

• Some  issues assumed away (distance metric)

[Is this valid?]

Why not just use Linear Regression?

Bias: the underlying choice of model (in this case, a line) cannot, with any choice 
of parameters (constant term and slope) and with any amount of data (the dots)
capture the full relationship.
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Why not just Join the Dots?

Why is fitting the noise so bad?
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One-Nearest Neighbor

Similar to Join The Dots with Pro and Con.

• PRO:  It is easy to implement with multivariate inputs.

• CON:  It no longer interpolates locally

Copyright © 2001, Andrew W. Moore

k-Nearest Neighbor (here k=9)

K-nearest neighbor for function fitting smoothes away noise, but there are 
clear deficiencies.

What can we do about all the discontinuities that k-NN gives us?
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Kernel Regression

(Not Dual/GP Regression)

Four things make a memory based learner:

1. A distance metric

Scaled Euclidian

2. How many nearby neighbors to look at?

All of them

3. A weighting function (optional)

wi = exp(-D(xi, query)2 / Kw
2)

Nearby points to the query are weighted strongly, far 

points weakly. The KW parameter is the Kernel 

Width. Very important.

4. How to fit with the local points?

Predict the weighted average of the outputs:

predict = Σwiyi / Σwi

Copyright © 2001, Andrew W. Moore

Kernel Regression Predictions

Increasing the kernel width Kw means further away points get 
an opportunity to influence you.

As Kw�infinity, the prediction tends to the global average.

KW=10 KW=20 KW=80

Copyright © 2001, Andrew W. Moore
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Kernel Regression on our test cases

KW=1/32 of x-axis width.

But… AWM needed to 

choose the right KW to 

achieve this.

Choosing a good Kw is important. Not just for Kernel Regression, but for all 

the locally weighted learners

KW=1/32 of x-axis width.

It’s nice to see a smooth 

curve at last. But rather 

bumpy. If Kw gets any 

higher, the fit is poor.

KW=1/16 axis width.

Nice and smooth, but are the 

bumps justified, or is this 

overfitting?

Copyright © 2001, Andrew W. Moore

Kernel Regression can look bad

KW = Best.

Clearly not capturing the 
simple structure of the 
data.. Note the complete 
failure to extrapolate at 
edges.

KW = Best.

Also much too local 
fitting. Why wouldn’t 
increasing Kw help? 
Because then it would all 
be “smeared”.

KW = Best.

Three noisy linear 
segments. But best kernel 
regression gives poor 
gradients.

Time to try something more powerful…

Copyright © 2001, Andrew W. Moore

Locally Weighted Regression

• Like kernel regression LWR uses “neighbors”

• Kernel regression simply averages neighbors

• LWR finds a locally linear model

Locally Weighted Regression

Four things make a memory-based learner:
1. A distance metric

Scaled Euclidian

2. How many nearby neighbors to look at?

All of them

3. A weighting function (optional)

w(k) = exp(-D(x(k), xquery)
2 / Kw

2)

Nearby points to the query are weighted strongly, far points 

weakly. The Kw parameter is the Kernel Width.

4. How to fit with the local points?

First form a local linear model.  Find the θ that minimizes the locally 

weighted sum of squared residuals:
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Then predict ypredict=θT xquery

Copyright © 2001, Andrew W. Moore
Note:  Here w are neighbor weights θ are regression weights.

How LWR works

1. For each point (x(i),y(i)) compute w(i).

2. Let WX = Diag(w(I),..w(N))X

X - - >          WX

3. Let WY=Diag(w(1),..w(N))Y, so that y(i) �w(i)y(i)

4. θ = (WXTWX)-1(WXTWY)
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Linear regression not flexible but 

trains like lightning.

Locally weighted regression is very 

flexible and relatively fast to train.

Query

Find θ directly:

θ =(XTX)-1XTY

Copyright © 2001, Andrew W. Moore (modified by RP)

Locally weighted Polynomial regression

Kernel Regression
Kernel width KW at optimal 
level.

KW = 1/100 x-axis

LW Linear Regression
Kernel width KW at optimal 
level.

KW = 1/40 x-axis

LW Quadratic Regression
Kernel width KW at optimal 
level.

KW = 1/15 x-axis

Copyright © 2001, Andrew W. Moore

RP:  We defer discussion of cost/benefit of extra terms
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When’s Quadratic better than Linear?

• It can let you use a wider kernel without introducing bias,

• but in higher dimensions is expensive, needs more data. 

• Two “Part-way-between-linear-and-quadratic” polynomials:

– “Ellipses”: Add xi
2 terms to the model, but not cross-

terms (no xixj where i=j)

– “Circles”: Add only one extra term to the model:
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Locally Weighted Learning: Variants

• Range Searching: Average all neighbors w/in given range

• Range-based linear regression

• Linear Regression on K-nearest-neighbors

• Weighting functions that decay to 0 at the kth nn

• Locally weighted Iteratively Reweighted Least Squares

• Locally weighted Logistic Regression

• Locally weighted classifiers

• Multilinear Interpolation

• Kuhn-Triangulation-based Interpolation

• Spline Smoothers

Copyright © 2001, Andrew W. Moore

Non-Parametric Methods: Conclusions

• Very expressive method for

– Classification

– Regression

• Perhaps too powerful

• Can be memory/compute intensive for queries

• Heavy dependence upon distance/kernel

• Good method to use when:

– Data fills feature space well

– Good intuitions about distance


