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Principle Components Analysis

¢ |dea:

— Given data points in d-dimensional space, project
into lower dimensional space while preserving as
much information as possible

* E.g., find best planar approximation to 3D data
* E.g., find best planar approximation to 10* D data

— In particular, choose projection that minimizes
squared error in reconstructing original data

Why do we care?

* Lower dimensional representations permit
— Compression
— Noise filtering

* As preprocessing for classification
— Reduces feature space dimension
« Simpler Classifiers
* Possibly better generalization

— May facilitate simple (nearest neighbor) methods

Review of a Few Linear Algebra Facts

* A set of vectors is orthonormal if:
— All vectors in the set have norm 1
— Any two different vectors have dot-product 0

* Any vector in a linear space can be expressed
as a weighted combination of norm 1 vectors
— specifically, the vectors than form a basis for
the space

PCA: Find Projections to Minimize Reconstruction Error

Assume data is set of d-dimensional vectors,

XM= (2% ...al)

where nth vector is X" =

i

M=~

on . T
zi'W; g uj =G5
1

We can represent these in terms of any d orthonormal basis vectors

PCA: given M<d. Find  (uj...ups)

N
that minimizes Ej = > ||x" — "2

M n=1

where 3" = x4+ Y 2w
i=1

Review: Eigenvectors

Matrix A has eigenvector u with eigenvalue A if:

Au=Au

For symmetric A (scaled) eigenvectors:
— Are orthogonal

— Have real eigenvalues

— Form an orthonormal basis for A

— (See appendix C)
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Revi

ew: Projection

¢ Orthonormal basis -> trivial projection

* Suppose U is our
(formed by first k

basis
eigenvectors)

* Suppose we want to project a new x

w=U"U)'U"x
=U"x

* Note: We typically assume x has mean subtracted

already

PCA

PCA: given M<d. Find (ug...upp)

N
. _ <n|[2
that minimizes Ea = > |[x" —%"||
n=1
M
where %" =x 4 Z 2y
i=1

Note we get zero error if M=d.
N
Teen _ 2)12
Therefore, Ey = Z Z [ (x" — %)]
i=M+1n=1
d /_This minimized when u;is
— Z ulT}: u; eigenvector of X, i.e.,
i=M+1

when:
Tu; = \Nu;

Covariance matrix: 3 = Z(X" —-X)(x" - )_()T
n

Equivalent problem: Maximize variance in the dimensions we keep

Justifying

Use of Eigenvectors

* We want to minimize: u” Yu

Take the gradie

Subjectto: y"u=1
Use Lagrange Multipliers to minimize:

u' Su—Au'u
nt, setto 0:
Su—A'u=0

* True when we use eigenvalues, vectors

PCA
d
Minimize Eyy= Y. ul/= u
i=M+1

— Zui = )‘iui
% “Eigenvector of £

Eigenvalue
d PCA algorithm 1:
- En= ) Z Ai 1. X € Create N x d data matrix, with one
i=M+1 row vector x” per data point

2. A & subtract mean X from each row
vector x" in X

3. X € covariance matrix of A
4. Find eigenvectors and eigenvalues of £

5. PC’s € the M eigenvectors with largest
eigenvalues

PCA Example
M

R=x4+ ) 2
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Applying PCA

Example data set: Images of faces
(Famous Eigenface approach [Turk & Pentlandl], [Sirovich & Kirby)

Each datum is a point in image space

Each point vector of luminance values
Vectors are long, e.g., 256x256=64K
These form columns of A, X=AAT
Problem: AAT is unreasonably large!

.

.

A Clever Workaround

Note that N<<d(=64K)

Use L=ATA instead of X=AAT
Suppose v is eigenvector of L
Av is eigenvector of £

Lv=pw
ATAv=mp
AAT Av = Ay

2(Av)=y(Av)

Application to Eigenfaces

* m=hundreds-thousands of faces

* Keep k~¥m/10 eigenvectors (eigenfaces)

* Achieve:
— Low reconstruction error
— Relatively high classification accuracy (across faces)
— Robust measure of faceness

e Example:
http://www.cs.princeton.edu/~cdecoro/eigenfaces/

Summary of PCA Uses

Data compression

(compress data by representing entire data set as coefficients for a
small number of principle components)
Noise filtering

(assume low eigenvalue components correspond to noise)
Feature selection for supervised learning

(assumes low eigenvalue components are noise/irrelevant features)
Nearest neighbor classification

(assumes subpace of principle components is a more natural space
in which to measure distances)
Direct classification

(assume distance to span of principle components is an indicator of
class membership)
Visualization

(assume the first 2 or 3 principle components show the interesting
relationships that exist in the data)

Shortcomings

* Requires carefully controlled data: (for example)
— All faces centered in frame
— Same size
— Some sensitivity to angle

* Completely knowledge free method
— (sometimes this is good)

— Doesn’t know that faces are wrapped around 3D objects
(heads)
— Makes no effort to preserve class distinctions

PCA Problem Data Set

PCA doesn’t know about labels!




PCA Conclusions

* PCA finds orthonormal basis for data
* Sorts dimensions in order of importance
 Discard low significance dimensions to:
— Get compact description
— Ignore noise
— Improve classification (hopefully)
* Not magic:
— Doesn’t know class labels
— Can only capture linear variations
* One of many types of dimensionality reduction!
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