

Principle Components Analysis

Idea:

- Given data points in d-dimensional space, project into lower dimensional space while preserving as much information as possible
 - E.g., find best planar approximation to 3D data
 - + E.g., find best planar approximation to $10^4\,\,\text{D}$ data
- In particular, choose projection that minimizes squared error in reconstructing original data

Why do we care?

- · Lower dimensional representations permit
 - Compression
 - Noise filtering
- As preprocessing for classification
 - Reduces feature space dimension
 - Simpler Classifiers
 - Possibly better generalization
 - May facilitate simple (nearest neighbor) methods

Review of a Few Linear Algebra Facts

- A set of vectors is orthonormal if:
 - $-\operatorname{All}$ vectors in the set have norm 1
 - Any two different vectors have dot-product 0
- Any vector in a linear space can be expressed as a weighted combination of norm 1 vectors

 specifically, the vectors than form a basis for the space



Review: Eigenvectors

• Matrix A has eigenvector u with eigenvalue λ if:

$$Au = \lambda u$$

- For symmetric A (scaled) eigenvectors:
 - Are orthogonal
 - Have real eigenvalues
 - Form an orthonormal basis for A
 - (See appendix C)

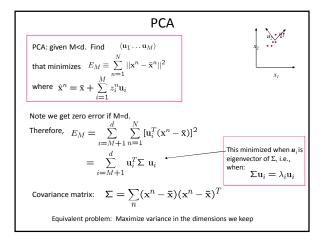
Review: Projection

- Orthonormal basis -> trivial projection
- Suppose U is our basis (formed by first k eigenvectors)
- Suppose we want to project a new x

$$w = (U^T U)^{-1} U^T x$$

$$= U^T x$$

• Note: We typically assume x has mean subtracted already



Justifying Use of Eigenvectors

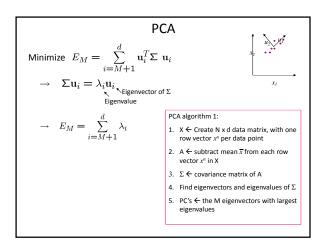
- We want to minimize: $u^T \sum u$
- Subject to: $u^T u = 1$
- Use Lagrange Multipliers to minimize:

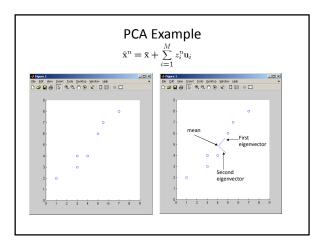
 $u^T \sum u - \lambda u^T u$

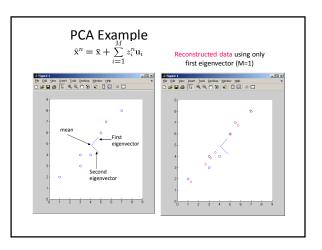
• Take the gradient, set to 0:

 $\sum u - \lambda' u = 0$

• True when we use eigenvalues, vectors







Applying PCA

- Example data set: Images of faces (Famous Eigenface approach [Turk & Pentland], [Sirovich & Kirby)
- Each datum is a point in image space
- Each point vector of luminance values
- Vectors are long, e.g., 256x256=64K
- These form columns of A, $\Sigma = AA^T$
- Problem: AA^T is unreasonably large!

A Clever Workaround

- Note that N<<d(=64K)
- Use L=A^TA instead of Σ =AA^T
- Suppose v is eigenvector of L
- Av is eigenvector of $\boldsymbol{\Sigma}$

$$Lv = \psi$$
$$A^{T}Av = \psi$$
$$AA^{T}Av = \gamma Av$$

$$\sum (Av) = \gamma(Av)$$

Application to Eigenfaces

- m=hundreds-thousands of faces
- Keep k~m/10 eigenvectors (eigenfaces)
- Achieve:
 - Low reconstruction error
 - Relatively high classification accuracy (across faces)
- Robust measure of faceness
 Example: http://www.cs.princeton.edu/~cdecoro/eigenfaces/

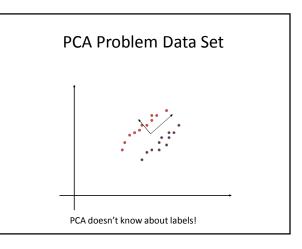
Summary of PCA Uses

- Data compression
- (compress data by representing entire data set as coefficients for a small number of principle components)
- Noise filtering (assume low eigenvalue components correspond to noise)
- Feature selection for supervised learning
 (assumes low eigenvalue components are noise/irrelevant features)
- Nearest neighbor classification

 (assume subpace of principle components is a more natural space in which to measure distances)
- Direct classification (assume distance to span of principle components is an indicator of
- (assume distance to span of principle components is an indicator o class membership) • Visualization
- (assume the first 2 or 3 principle components show the interesting relationships that exist in the data)

Shortcomings

- Requires carefully controlled data: (for example)
 - All faces centered in frame
 - Same size
 - Some sensitivity to angle
- Completely knowledge free method
 - (sometimes this is good)
 - Doesn't know that faces are wrapped around 3D objects (heads)
 - Makes no effort to preserve class distinctions



PCA Conclusions

- PCA finds orthonormal basis for data
- Sorts dimensions in order of importance
- Discard low significance dimensions to:
 - Get compact description
 - Ignore noise
 - Improve classification (hopefully)
- Not magic:
 - Doesn't know class labels
 - Can only capture linear variations
- One of many types of dimensionality reduction!