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PCA

Ron Parr

CPS 271

Principle Components Analysis

• Idea: 

– Given data points in d-dimensional space, project 

into lower dimensional space while preserving as 

much information as possible

• E.g., find best planar approximation to 3D data

• E.g., find best planar approximation to 104 D data

– In particular, choose projection that minimizes 

squared error in reconstructing original data

Why do we care?

• Lower dimensional representations permit

– Compression

– Noise filtering

• As preprocessing for classification

– Reduces feature space dimension

• Simpler Classifiers

• Possibly better generalization

– May facilitate simple (nearest neighbor) methods 

Review of a Few Linear Algebra Facts

• A set of vectors is orthonormal if:

– All vectors in the set have norm 1

– Any two different vectors have dot-product 0

• Any vector in a linear space can be expressed 

as a weighted combination of norm 1 vectors 

– specifically, the vectors than form a basis for 

the space

PCA: Find Projections to Minimize Reconstruction Error

Assume data is set of d-dimensional vectors, 

where nth vector is

We can represent these in terms of any d orthonormal basis vectors 
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PCA: given M<d.  Find 

that minimizes

where 

Mean 

Review:  Eigenvectors

• Matrix A has eigenvector u with eigenvalue λ if:

• For symmetric A (scaled) eigenvectors:

– Are orthogonal

– Have real eigenvalues

– Form an orthonormal basis for A

– (See appendix C)

uAu λ=
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Review: Projection

• Orthonormal basis -> trivial projection

• Suppose U is our basis

(formed by first k eigenvectors)

• Suppose we want to project a new x

• Note:  We typically assume x has mean subtracted 

already
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Note we get zero error if M=d.

Therefore, 

PCA: given M<d.  Find 

that minimizes

where 

Covariance matrix:

This minimized when u
i 
is 

eigenvector of Σ, i.e., 

when:

Equivalent problem:  Maximize variance in the dimensions we keep

Justifying Use of Eigenvectors

• We want to minimize:

• Subject to:

• Use Lagrange Multipliers to minimize:

• Take the gradient, set to 0:

• True when we use eigenvalues, vectors
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Minimize

Eigenvector of Σ

Eigenvalue

PCA algorithm 1:

1. X � Create N x d data matrix, with one 

row vector xn per data point

2. A � subtract mean x from each row 

vector xn in X

3. Σ � covariance matrix of A

4. Find eigenvectors and eigenvalues of Σ

5. PC’s � the M eigenvectors with largest 

eigenvalues

PCA Example

mean

First 

eigenvector

Second 

eigenvector

PCA Example

mean

First 

eigenvector

Second 

eigenvector

Reconstructed data using only 

first eigenvector (M=1)



11/8/2007

3

Applying PCA

• Example data set:  Images of faces 

(Famous Eigenface approach [Turk & Pentland], [Sirovich & Kirby)

• Each datum is a point in image space

• Each point vector of luminance values

• Vectors are long, e.g., 256x256=64K

• These form columns of A, Σ=AAT

• Problem: AAT is unreasonably large!

A Clever Workaround

• Note that N<<d(=64K)

• Use L=ATA instead of Σ=AAT

• Suppose v is eigenvector of L

• Av is eigenvector of Σ

vLv γ=

vAvA
T γ=

AvAvAA
T γ=

)()( AvAv γ=∑

Application to Eigenfaces

• m=hundreds-thousands of faces

• Keep k~m/10 eigenvectors (eigenfaces)

• Achieve:

– Low reconstruction error

– Relatively high classification accuracy (across faces)

– Robust measure of faceness

• Example: 
http://www.cs.princeton.edu/~cdecoro/eigenfaces/

Summary of PCA Uses

• Data compression
(compress data by representing entire data set as coefficients for a 

small number of principle components)

• Noise filtering
(assume low eigenvalue components correspond to noise)

• Feature selection for supervised learning
(assumes low eigenvalue components are noise/irrelevant features)

• Nearest neighbor classification
(assumes subpace of principle components is a more natural space 

in which to measure distances)

• Direct classification
(assume distance to span of principle components is an indicator of 

class membership)

• Visualization
(assume the first 2 or 3 principle components show the interesting 

relationships that exist in the data)

Shortcomings

• Requires carefully controlled data:  (for example)

– All faces centered in frame

– Same size

– Some sensitivity to angle

• Completely knowledge free method

– (sometimes this is good)

– Doesn’t know that faces are wrapped around 3D objects 

(heads)

– Makes no effort to preserve class distinctions

PCA Problem Data Set

PCA doesn’t know about labels!
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PCA  Conclusions

• PCA finds orthonormal basis for data

• Sorts dimensions in order of importance

• Discard low significance dimensions to:

– Get compact description

– Ignore noise

– Improve classification (hopefully)

• Not magic:

– Doesn’t know class labels

– Can only capture linear variations

• One of many types of dimensionality reduction!


