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Supervised Learning

e Given: Training Set
® Goal: Good performance on test set

e Assumptions:

— Training samples are independently drawn, and
identically distributed (IID)

— Test set is from same distribution as training set

Fitting Continuous Data
(Regression)
 Datum i has feature vector: ¢=(¢,(xD)...0,(xD))

Has real valued target: t®
e Concept space: linear combinations of features:

k
y(X(i);W) — z¢/(xm)wj — (P(X(i))’l'w
j=1

¢ Learning objective: Search to find “best” w

e (This is standard “data fitting” that most people
learn in some form or another.)

Linearity of Regression

* Regression typically considered a linear
method, but...

¢ Features not necessarily linear
e Features not necessarily linear

e Features not necessarily linear
¢ and, BTW, features not necessarily linear

Regression Examples

Predicting housing price from:
— House size, lot size, rooms, neighborhood*, etc.
¢ Predicting weight from:
— Sex, height, ethnicity, etc.
¢ Predicting life expectancy increase from:
— Medication, disease state, etc.
e Predicting crop yield from:
— Precipitation, fertilizer, temperature, etc.
¢ Fitting polynomials
— Features are monomials

Features/Basis Functions

¢ Polynomials

e Indicators

¢ Gaussian densities

¢ Step functions or sigmoids
e Sinusoids (Fourier basis)

¢ Wavelets

¢ Anything you can imagine...
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Minimizing Squared Training Set Error

What is “best”?

¢ No obvious answer to this question ¢ Why is this good?

¢ Three compatible answers:
— Minimize squared error on training set

— Maximize likelihood of the data
(under certain assumptions) L

. N ” R e Minimize:

— Project data into “closest” approximation

e Other answers possible

¢ How could this be bad?

E(w)= i(wrtp(x(”)—t(') y
i=1

Maximizing Likelihood of Data Maximizing P(X|H)

e Assume: 10 = y<iJ +e0

e Assume:
— True modelisin H
— Data have Gaussian noise (g(i))z
o Actually might want: e Where: P(e")=———exp(- )
oN2rx P 207
P(X|H)P(H)
argmax P(H | X)=——2>—— (Gaussian distribution w/mean 0, standard deviation )
H P(X)
* |s maximizing P(X|H) a good surrogate? * Therefore:
(maximizing over w) ) ) 1 (i) _ T ()2
P(t(') Ix“),w) _ exp(— (t w (Pz(x ) )
oN2w 20

Maximization Continued Checkpoint

» Maximizing over entire data set: ¢ So far we have considered:
n n ) _ T ()32 _ e e ..
HP(t“‘Ix“‘,H):H 1 exp( (t wzx ) ) Minimizing squared error on training set
= o2 20 — Maximizing Likelihood of training set
(given model, and some assumptions)

* Maximizing equivalent log formulation:
(ignoring constants)

i—(z“’ —w'x")? o Different approaches w/same objective!
i=1

e Or minimizing:
E=Y (" —w'x?") Look familiar?
i=1




Solving the Optimization Problem

» Nota bene: Good to keep optimization
problem and optimization technique separate
in your mind

» Some optimization approaches:
— Gradient descent
— Direct Minimization
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Minimizing E by Gradient Descent

E(w)

.+ gradientvector

Start with initial weight vector w

OE(w) OE(W)  JE(W)

Compute the gradient V,E= 5 2y
aw,  ow w,

Compute  w ¢ w—qgVE Where ais the step size

Repeat until convergence

(Adapted from Lise Getoor’s Slides)

Gradient Descent Issues

e For this particular problem:

— Global minimum exists

— Convergence “guaranteed” if done in “batch”
¢ Ingeneral

— Local optimum only

— Batch mode more stable

— Incremental possible
* Can oscillate

* Use decreasing step size (Robbins-Monro) to stabilize

Solving the Minimization Directly

E= z([m _ WT(p(x(‘)))z
i=1

n
. r . DT

V“,E o Z(I(r) —w ([)(X(')))(P(X('))
= scalar row vector

Set gradient to 0 to find min:

2 =W oG Np(x") =0 o(x)
i=l

(2)
. . x
zq)(xm)r[m7wrzq)(xm)¢<xm)r=0 b= (P( ) )
i=l i=1 .
o-w o d=0't-0'Pw=0 (")
w=(0"0) ot °(x")

Geometric Interpretation

 t=(t™M...tM) = point in n-space
e Ranging over w, w'¢=H =
— column space of features
— subspace of R" occupied by H
e Goal: Find “closest” pointin Hto t

e Suppose closeness = Euclidean distance

Another Geometric Interpretation

(Euclidean distance minimized
by orthogonal projection)

H space (linear combinations of ¢(x))




Minimizing Euclidean Distance

* Minimize: ‘t—thb‘z
¢ For n data points:

i(lm —wo(x®))?
i=l

¢ Equivalent to minimizing:

2 -wie(x™))? Look familiar?
i=l
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Checkpoint

¢ Three different ways to pick w in H
— Minimize squared error on training set
— Maximize likelihood of training set
— Distance minimizing projection into H

¢ All lead to same optimization problem!

. N T 2
argmin Ew)=Y (w'x" -1}
w i=1

Geometric Solution

e Geometric Approach (Strang)
¢ Let ® be the design matrix (see board)
¢ Require orthogonality:

Vz:(@z) (@w—t)=0

e

Any vector in H Line from t to solution

Vz:7 [®TPW-DP t]=0

Direct Solution Continued

e Whenis this true: vz: ;" [®"dw-d't]=0
e When:

d'Pow-d't=0

Same solution as direct
w=(D'P)"'d"t

minimization of error

When does the inverse exist?

Adding Regularization

e We previously considered adding a penalty to
error function do discourage overfitting

M
E=05w"w+Y (y(x;w)—1,)?
i=1

e Equivalent to a Gaussian, mean 0 prior on w
¢ Direction solution (exercise):

w=-d"P)"'Pd"t

What if ti) is a vector?

¢ Nothing changes!
e Scalar prediction:

w= (D' D)D"t
¢ Vector prediction (exercise):

W= (®'®)"' d'T

Weight matrix / Target matrix
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What about other criteria?

¢ How about minimizing worse case loss?
min maxi(wa([) —t(”)

¢ Solve by linear program...

Minimizing Max Error

e Constraints: Vi
> wl¢(x(r))7t(r)

£ —quO(Xm)

* Objective: Minimize €

¢ Don’t use for noisy data!

Understanding Loss

¢ Suppose we have a squared error loss
function: L (gets too confusing to use E)

¢ Define h(x)=E[t|x]

E[L]= [{y(x) = h()Y p(x)dx+ [ {h(x) ~ 1} p(x,1)dxd
L )\

J

Y T
Noise in distribution of targets

Mismatch between hypothesis (nothing we can do)

and target — we can influence
this

Bias and Variance

E[L]= [{y(®) = h(x)}’ p(ydx + [ {h(x) =1} p(x, 1)dxdr

¢ Since y(x) is fit to data, consider expectation
over data sets for the part we control

E,liy(x:D)-hx)y’]

= (E,[y(x: D)= k(0] + E, [[y(x; D)~ E, [y(x: D) ]

\ J )
T T

bias? variance

Understanding Bias
{E,[y(x; D)= h(x)])?

* Measures how well our approximation
architecture can fit the data

* Weak approximators (e.g. low degree
polynomials) will have high bias

¢ Strong approximators (e.g. high degree
polynomials, will have lower bias)

Understanding Variance
E, iy D) - E,[yxs D)y

* No direct dependence on target values

e For a fixed size D:
— Strong approximators will tend to have more variance
— Weak approximators will tend to have less variance

¢ Variance will typically disappear as size of D goes
to infinity




What is the Best Choice of
Polynomial?

Noisy Source Data
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Degree 1 Fit

Degree O Fit
1t M =0
o
t
O/\\ o)
of N\
(@)
71 F
0 o
Degree 3 Fit

Degree 9 Fit

Observations

e Degree 3 is the best match to the source
e Degree 9 is the best match to the samples

e Performance on test data:

—o6— Training
—6— Test




Trade off Between Bias and Variance

¢ Isthe problem a bad choice of polynomial?

¢ Isthe problem that we don’t have enough data?
* Answer: Yes

* Lower bias -> Higher Variance

o Higher bias -> Lower Variance

1 5 o N =100
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Concluding Comments

¢ Regression is the most basic machine
learning algorithm
e Multiple views are all equivalent:
— Minimize squared loss
— Maximize likelihood
— Orthogonal projection
— Regularization with norm of weights, Bayesian
prior
¢ Bias and variance trade off




