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Regression
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Supervised Learning

• Given:  Training Set

• Goal:  Good performance on test set

• Assumptions:

– Training samples are independently drawn, and 

identically distributed (IID)

– Test set is from same distribution as training set

Fitting Continuous Data

(Regression)

• Datum i has feature vector: φφφφ=(φ1(x
(i))…φk(x

(i)))

• Has real valued target: t(i)

• Concept space:  linear combinations of features:

• Learning objective:  Search to find “best” w

• (This is standard “data fitting” that most people 
learn in some form or another.)
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• Regression typically considered a linear

method, but…

• Features not necessarily linear

• Features not necessarily linear

• Features not necessarily linear

• Features not necessarily linear

• and, BTW, features not necessarily linear

Regression Examples

• Predicting housing price from:

– House size, lot size, rooms, neighborhood*, etc.

• Predicting weight from:

– Sex, height, ethnicity, etc.

• Predicting life expectancy increase from:

– Medication, disease state, etc.

• Predicting crop yield from:

– Precipitation, fertilizer, temperature, etc.

• Fitting polynomials

– Features are monomials

Features/Basis Functions

• Polynomials

• Indicators

• Gaussian densities

• Step functions or sigmoids

• Sinusoids (Fourier basis)

• Wavelets

• Anything you can imagine…
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What is “best”?

• No obvious answer to this question

• Three compatible answers:

– Minimize squared error on training set

– Maximize likelihood of the data

(under certain assumptions)

– Project data into “closest” approximation

• Other answers possible

Minimizing Squared Training Set Error

• Why is this good?

• How could this be bad?

• Minimize:
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Maximizing Likelihood of Data

• Assume:

– True model is in H

– Data have Gaussian noise

• Actually might want:

• Is maximizing P(X|H) a good surrogate? 
(maximizing over w)
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Maximizing P(X|H)

• Assume:

• Where:

• Therefore:
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(Gaussian distribution w/mean 0, standard deviation σ)
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• Maximizing over entire data set:

• Maximizing equivalent log formulation:

(ignoring constants)

• Or minimizing:
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Maximization Continued Checkpoint

• So far we have considered:

– Minimizing squared error on training set

– Maximizing Likelihood of training set

(given model, and some assumptions)

• Different approaches w/same objective!



���������

�

��������	
���
	�����	������������ ���� ���� !��" �� #��$ �$�%&%'��%��$(��)�& ��" �$�%&%'��%�� ��*+�%,-� .�$�(���%� /�-( &%�"� 0�&� �$�%&%'��%�� �$$(��*+�. 1 23456789 57:;7891 <637;9 =686>6?496@8
Minimizing E by Gradient Descent 
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Start with initial weight vector w 0

E(w)
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E∇−← αwwCompute where α is the step size

Repeat until convergence MNOPQRSO TUVW XYZS [SRVVU\Z ]^YOSZ_
Gradient Descent Issues

• For this particular problem:

– Global minimum exists

– Convergence “guaranteed” if done in “batch”

• In general

– Local optimum only

– Batch mode more stable

– Incremental possible

• Can oscillate

• Use decreasing step size (Robbins-Monro) to stabilize

Solving the Minimization Directly
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Geometric Interpretationw xyz{|}~�{|�~� y ����{ �� �������
• Ranging over w, wTφφφφ= H =

– column space of features

– subspace of Rn occupied by H

• Goal:  Find “closest” point in H to t

• Suppose closeness = Euclidean distance

Another Geometric Interpretation�
H space (linear combinations of φ(x))

(Euclidean distance minimized

by orthogonal projection)
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Minimizing Euclidean Distance

• Minimize:

• For n data points:

• Equivalent to minimizing:

2
Φ− T

wt

∑
=

−
n

i

iTi xt
1

2)()( ))(( φw

Look familiar?∑
=

−
n

i

iTi
xt

1

2)()(
))(( φw

Checkpoint

• Three different ways to pick w in H

– Minimize squared error on training set

– Maximize likelihood of training set

– Distance minimizing projection into H

• All lead to same optimization problem!
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Geometric Solution

• Geometric Approach (Strang)

• Let ΦΦΦΦ be the design matrix (see board)

• Require orthogonality:
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Direct Solution Continued

• When is this true:

• When: 
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Same solution as direct

minimization of error

Adding Regularization

• We previously considered adding a penalty to 

error function do discourage overfitting

• Equivalent to a Gaussian, mean 0 prior on w

• Direction solution (exercise):
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What if t(i) is a vector?

• Nothing changes!

• Scalar prediction:

• Vector prediction (exercise):

tw
TT ΦΦΦ= −1)(

TW
TT ΦΦΦ= −1)(������ ������ ������ ������



���������

�

What about other criteria?

• How about minimizing worse case loss?

• Solve by linear program…
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Minimizing Max Error

• Constraints:

• Objective:  Minimize ε

• Don’t use for noisy data!
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Understanding Loss

• Suppose we have a squared error loss 

function: L (gets too confusing to use E)

• Define h(x)=E[t|x]
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Bias and Variance

• Since y(x) is fit to data, consider expectation 

over data sets for the part we control
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Understanding Bias

• Measures how well our approximation 

architecture can fit the data

• Weak approximators (e.g. low degree 

polynomials) will have high bias

• Strong approximators (e.g. high degree 

polynomials, will have lower bias)
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Understanding Variance

• No direct dependence on target values

• For a fixed size D:

– Strong approximators will tend to have more variance

– Weak approximators will tend to have less variance

• Variance will typically disappear as size of D goes 

to infinity
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What is the Best Choice of 

Polynomial?

Noisy Source Data

Degree 0 Fit

Degree 1 Fit Degree 3 Fit

Degree 9 Fit
Observations

• Degree 3 is the best match to the source

• Degree 9 is the best match to the samples

• Performance on test data:
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Trade off Between Bias and Variance

• Is the problem a bad choice of polynomial?

• Is the problem that we don’t have enough data?

• Answer:  Yes

• Lower bias -> Higher Variance

• Higher bias -> Lower Variance 

Concluding Comments

• Regression is the most basic machine 

learning algorithm

• Multiple views are all equivalent:

– Minimize squared loss

– Maximize likelihood

– Orthogonal projection

– Regularization with norm of weights, Bayesian 

prior

• Bias and variance trade off


