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Support Vector Machines

CPS 271

Material from:
Lise Getoor,
Andrew Moore http://www.cs.cmu.edu/~awm/tutorials
Tom Dietterich, Andrew Ng, Michael Littman, Rich Maclin

3 Views
• Geometric 

- Maximizing Margin

• Kernel Methods

- Making nonlinear decision boundaries linear

- Efficiently!

• Capacity

- Structural Risk Minimization

SVM History
• SVM is a classifier derived from statistical learning 

theory by Vapnik and Chervonenkis

• SVM was first introduced by Boser, Guyon and 
Vapnik in COLT-92

• SVM became famous when, using pixel maps as 
input, it gave accuracy comparable to NNs with 
hand-designed features in a handwriting 
recognition task

• SVM is closely related to:

- Kernel machines (a generalization of SVMs), 
large margin classifiers, reproducing kernel 
Hilbert space, Gaussian process, Boosting

Linear Classifiers
f x

α

yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

How would you 

classify this data?
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Linear Classifiers
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Linear Classifiers
f x

α

yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

Any of these 

would be fine..

..but which is 
best?
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Classifier Margin
f x

α

yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

Define the margin
of a linear 
classifier as the 
width that the 
boundary could be 
increased by 
before hitting a 
datapoint.
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Maximum Margin
f x

α

yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

The maximum 
margin linear 
classifier is the 
linear classifier 
with the maximum 
margin.

This is the 
simplest kind of 
SVM (Called an 
LSVM)

Linear SVM
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Maximum Margin
f x

α

yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

The maximum 
margin linear 
classifier is the 
linear classifier 
with the, um, 
maximum margin.

This is the 
simplest kind of 
SVM (Called an 
LSVM)

Support Vectors 

are those 
datapoints that 

the margin 

pushes up 
against

Linear SVM
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Why Maximum Margin?

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

The maximum 
margin linear 
classifier is the 
linear classifier 
with the, um, 
maximum margin.

This is the 
simplest kind of 
SVM (Called an 
LSVM)

Support Vectors 

are those 
datapoints that 

the margin 

pushes up 
against

1. Intuitively this feels safest. 

2. If we’ve made a small error in the 
location of the boundary (it’s been 

jolted in its perpendicular direction) 

this gives us least chance of causing a 
misclassification.

3. LOOCV is easy since the model is 
immune to removal of any non-

support-vector datapoints.

4. There’s some theory (using VC 
dimension) that is related to (but not 

the same as) the proposition that this 

is a good thing.

5. Empirically it works very very well.

Copyright © 2001, 2003, Andrew W. Moore
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Specifying a line and margin

• How do we represent this mathematically?

• …in m input dimensions?

Plus-Plane

Minus-Plane

Classifier Boundary
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Specifying a line and margin

• Plus-plane   =    { x : w . x + b = +1 }

• Minus-plane =   { x : w . x + b = -1 }

Plus-Plane

Minus-Plane

Classifier Boundary

Classify as..

Copyright © 2001, 2003, Andrew W. Moore

+1 if w . x + b >= 1

-1 if w . x + b <= -1

Universe 
explodes

if -1 < w . x + b < 1
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Computing the margin width

• Plus-plane   =    { x : w . x + b = +1 }

• Minus-plane =   { x : w . x + b = -1 }

Claim: The vector w is perpendicular to the Plus Plane. Why?

M = Margin Width

How do we compute 
M in terms of w
and b?
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Computing the margin width

• Plus-plane   =    { x : w . x + b = +1 }

• Minus-plane =   { x : w . x + b = -1 }

Claim: The vector w is perpendicular to the Plus Plane. Why?

M = Margin Width

How do we compute 
M in terms of w
and b?

Let u and v be two vectors on the 

Plus Plane. What is w . ( u – v ) ?

And so of course the vector w is also 

perpendicular to the Minus Plane
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Computing the margin width

• Plus-plane   =    { x : w . x + b = +1 }

• Minus-plane =   { x : w . x + b = -1 }

• The vector w is perpendicular to the Plus Plane

• Let x- be any point on the minus plane

• Let x+ be the closest plus-plane-point to x-.

M = Margin Width

How do we compute 
M in terms of w
and b?

x-

x+

Any location in 
�m: not 

necessarily a 
datapoint

Any location in 
Rm: not 

necessarily a 
datapoint
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Computing the margin width

• Plus-plane   =    { x : w . x + b = +1 }

• Minus-plane =   { x : w . x + b = -1 }

• The vector w is perpendicular to the Plus Plane

• Let x- be any point on the minus plane

• Let x+ be the closest plus-plane-point to x-.

• Claim: x+ = x- + λ w for some value of λ. Why?

M = Margin Width

How do we compute 
M in terms of w
and b?

x-

x+
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Computing the margin width

• Plus-plane   =    { x : w . x + b = +1 }

• Minus-plane =   { x : w . x + b = -1 }

• The vector w is perpendicular to the Plus Plane

• Let x- be any point on the minus plane

• Let x+ be the closest plus-plane-point to x-.

• Claim: x+ = x- + λ w for some value of λ. Why?

M = Margin Width

How do we compute 
M in terms of w
and b?

x-

x+

The line from x- to x+ is 
perpendicular to the 
planes.

So to get from  x- to x+

travel some distance in 
direction w.

Copyright © 2001, 2003, Andrew W. Moore

Computing the margin width

What we know:

• w . x+ + b = +1 

• w . x- + b = -1 

• x+ = x- + λ w

• |x+ - x- | = M

It’s now easy to get M
in terms of w and b

M = Margin Width

x-

x+

Copyright © 2001, 2003, Andrew W. Moore
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Computing the margin width

What we know:

• w . x+ + b = +1 

• w . x- + b = -1 

• x+ = x- + λ w

• |x+ - x- | = M

It’s now easy to get M
in terms of w and b

M = Margin Width

w . (x - + λ w) + b = 1 

=>

w . x - + b + λ w .w = 1

=>

-1 + λ w .w = 1

=>

x-

x+

w.w

2
=λ
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Computing the margin width

What we know:

• w . x+ + b = +1 

• w . x- + b = -1 

• x+ = x- + λ w

• |x+ - x- | = M

•

M = Margin Width =

M = |x+ - x- | =| λ w |=

x-

x+

w.w

2
=λ

wwww

ww

.

2

.

.2
==

www .|| λλ ==

ww.

2
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Learning the Maximum Margin Classifier

Given a guess of w and b we can

• Compute whether all data points in the correct half-planes

• Compute the width of the margin

So now we just need to write a program to search the space 
of w’s and b’s to find the widest margin that matches all 
the datapoints. How?

Gradient descent? Simulated Annealing? Matrix Inversion? 
EM? Newton’s Method?

M = Margin Width =

x-

x+
ww.

2

Copyright © 2001, 2003, Andrew W. Moore

Useful Stuff
• Linear Programming

find w

argmax c⋅w

subject to 

w⋅ai ≤ bi, for i = 1, …, m

wj ≥ 0 for j = 1, …, n

Don’t worry…

it’s good for 
you…

There are fast algorithms for solving linear programs including the

simplex algorithm and Karmarkar’s algorithm

Duality
• Primal

Find argmax c⋅w

subject to 

Aw ≤ b

wj ≥ 0 for j = 1, …, n

• Equivalent Dual

Find argmin b⋅y

subject to 

ATy ≥ c

yj ≥ 0 for j = 1, …, n

Strong duality result:

If  w* is an optimal solution for

the primal, then the dual has

optimal solution y* such that:

c⋅w*= b⋅y*

Learning via Quadratic Programming
• QP is a well-studied class of optimization 

algorithms to maximize a quadratic function of 
some real-valued variables subject to linear 
constraints.

Copyright © 2001, 2003, Andrew W. Moore
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Quadratic Programming

2
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Learning the Maximum Margin Classifier
Given guess of w , b we can

• Compute whether all data 
points are in the correct 
half-planes

• Compute the margin width

Assume R datapoints, each 
(xk,yk) where yk = +/- 1

M =

ww.

2

What should our quadratic 
optimization criterion be?

How many constraints will we 
have? 

What should they be?

Copyright © 2001, 2003, Andrew W. Moore

Minimize w.w
R

w . xk + b >= 1 if yk = 1

w . xk + b <= -1 if yk = -1

Uh-oh!

denotes +1

denotes -1

This is going to be a problem!

What should we do?

Copyright © 2001, 2003, Andrew W. Moore

Uh-oh!

denotes +1

denotes -1

This is going to be a problem!

What should we do?

Idea 1:

Find minimum w.w, while 
minimizing number of 
training set errors.

Problem: Two things to 
minimize makes for an 
ill-defined optimization

Copyright © 2001, 2003, Andrew W. Moore
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Uh-oh!

denotes +1

denotes -1

This is going to be a problem!

What should we do?

Idea 1.1:

Minimize

w.w + C (#train errors)

There’s a serious practical 
problem that’s about to make 
us reject this approach. Can 
you guess what it is?

Tradeoff parameter

Copyright © 2001, 2003, Andrew W. Moore

Uh-oh!

denotes +1

denotes -1

This is going to be a problem!

What should we do?

Idea 1.1:

Minimize

w.w + C (#train errors)

There’s a serious practical 
problem that’s about to make 
us reject this approach. Can 
you guess what it is?

Tradeoff parameter
Can’t be expressed as a Quadratic 

Programming problem.

Solving it may be too slow.

(Also, doesn’t distinguish between 
disastrous errors and near misses)

Copyright © 2001, 2003, Andrew W. Moore

Uh-oh!

denotes +1

denotes -1

This is going to be a problem!

What should we do?

Idea 2.0:

Minimize
w.w + C (distance of error 

points to their
correct place)

Copyright © 2001, 2003, Andrew W. Moore

Learning Maximum Margin with Noise
Given guess of w , b we can

• Compute sum of distances 
of points to their correct 
zones

• Compute the margin width

Assume R datapoints, each 
(xk,yk) where yk = +/- 1

M =

ww.

2

What should our quadratic 
optimization criterion be?

How many constraints will we 
have? 

What should they be?
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Learning Maximum Margin with Noise
Given guess of w , b we can

• Compute sum of distances 
of points to their correct 
zones

• Compute the margin width

Assume R datapoints, each 
(xk,yk) where yk = +/- 1

M =

ww.

2

What should our quadratic 
optimization criterion be?

Minimize

∑
=

+
R

k

kεC
1

.
2

1
ww

ε7

ε11

ε2

How many constraints will we 
have? R

What should they be?

w . xk + b >= 1-εk if yk = 1

w . xk + b <= -1+εk if yk = -1
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Learning Maximum Margin with Noise
Given guess of w , b we can

• Compute sum of distances 
of points to their correct 
zones

• Compute the margin width

Assume R datapoints, each 
(xk,yk) where yk = +/- 1

M =

ww.

2

What should our quadratic 
optimization criterion be?

Minimize

∑
=

+
R

k

kεC
1

.
2

1
ww

ε7

ε11ε2

Our original (noiseless data) QP had m+1 
variables: w1, w2, … wm, and b.

Our new (noisy data) QP has m+1+R 
variables: w1, w2, … wm, b, εk , ε1 ,… εR 

m = # input 

dimensions

How many constraints will we 
have? R

What should they be?

w . xk + b >= 1-εk if yk = 1

w . xk + b <= -1+εk if yk = -1

R= # records

Copyright © 2001, 2003, Andrew W. Moore
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How many constraints will we 
have? R

What should they be?

w . xk + b >= 1-εk if yk = 1

w . xk + b <= -1+εk if yk = -1

Learning Maximum Margin with Noise
Given guess of w , b we can

• Compute sum of distances 
of points to their correct 
zones

• Compute the margin width

Assume R datapoints, each 
(xk,yk) where yk = +/- 1

M =

ww.

2

What should our quadratic 
optimization criterion be?

Minimize

∑
=

+
R

k

kεC
1

.
2

1
ww

ε7

ε11ε2

There’s a bug in this QP. Can you spot it?
Copyright © 2001, 2003, Andrew W. Moore

Learning Maximum Margin with Noise
Given guess of w , b we can

• Compute sum of distances 
of points to their correct 
zones

• Compute the margin width

Assume R datapoints, each 
(xk,yk) where yk = +/- 1

M =

ww.

2

What should our quadratic 
optimization criterion be?

Minimize

How many constraints will we 
have? 2R

What should they be?

w . xk + b >= 1-εk if yk = 1

w . xk + b <= -1+εk if yk = -1

εk >= 0 for all k

∑
=

+
R

k

kεC
1

.
2

1
ww

ε7

ε11ε2
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An Equivalent Dual QP

Maximize ∑∑∑
= ==

−
R

k

R

l

kllk

R

k

k Qααα
1 11 2

1
where ).( lklkkl yyQ xx=

Subject to these 
constraints:

kCαk ∀≤≤0

Then define:

∑
=

=
R

k

kkk yα
1

xw

k
k

KKKK

αK

εyb

maxarg where

.)1(

=

−−= wx

Then classify with:

f(x,w,b) = sign(w. x - b)

0
1

=∑
=

R

k

kk yα
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Maximize where ).( lklkkl yyQ xx=

Subject to these 
constraints:

kCαk ∀≤≤0

Then define:

∑
=

=
R

k

kkk yα
1

xw

k
k

KKKK

αK

εyb

maxarg where

.)1(

=

−−= wx

Then classify with:

f(x,w,b) = sign(w. x - b)

0
1

=∑
=

R

k

kk yα

Datapoints with αk > 0 
will be the support 
vectors

..so this sum only needs 

to be over the 
support vectors.

∑∑∑
= ==

−
R

k

R

l

kllk

R

k

k Qααα
1 11 2

1
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An Equivalent Dual QP

∑∑∑
= ==

−
R

k

R

l

kllk

R

k

k Qααα
1 11 2

1

An Equivalent Dual QP

Maximize where ).( lklkkl yyQ xx=

Subject to these 
constraints:

kCαk ∀≤≤0

Then define:

∑
=

=
R

k

kkk yα
1

xw

k
k

KKKK

αK

εyb

maxarg where

.)1(

=

−−= wx

Then classify with:

f(x,w,b) = sign(w. x - b)

0
1

=∑
=

R

k

kk yα

Datapoints with αk > 0 
will be the support 
vectors

..so this sum only needs 

to be over the 
support vectors.

Why did I tell you about this 
equivalent QP?

• It’s a formulation that QP 
packages can optimize more 
quickly

• Because of further 
developments you’re about to 
learn.

Copyright © 2001, 2003, Andrew W. Moore
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Suppose we’re in 1-dimension

What would 
SVMs do with 
this data?

x=0

Copyright © 2001, 2003, Andrew W. Moore

Suppose we’re in 1-dimension

Not a big surprise

Positive “plane” Negative “plane”

x=0

Copyright © 2001, 2003, Andrew W. Moore

Harder 1-dimensional dataset

That’s wiped the 
smirk off SVM’s 
face.

What can be 
done about 
this?

x=0

Copyright © 2001, 2003, Andrew W. Moore

Harder 1-dimensional dataset
Remember how 

permitting non-
linear basis 
functions made 
linear regression 
so much nicer?

Let’s permit them 
here too

x=0 ),( 2

kkk xx=z
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Harder 1-dimensional dataset
Remember how 

permitting non-
linear basis 
functions made 
linear regression 
so much nicer?

Let’s permit them 
here too

x=0 ),( 2

kkk xx=z
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Common SVM basis functions

zk = ( polynomial terms of xk of degree 1 to q )

zk = ( radial basis functions of xk )

zk = ( sigmoid functions of xk )

This is sensible. 

Is that the end of the story?

No…there’s one more trick!








 −
==

KW

||
KernelFn)(][

jk

kjk φj
cx

xz

Copyright © 2001, 2003, Andrew W. Moore
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Quadratic 
Basis Functions








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

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


















































=

− mm

m

m

m

m

xx

xx

xx

xx

xx

xx

x

x

x

x

x

x

1

1

32

1

31

21

2

2

2

2

1

2

1

2

:

2

:

2

2

:

2

2

:

2

:

2

2

1

)(xΦ

Constant Term

Linear Terms

Pure 

Quadratic 
Terms

Quadratic 

Cross-Terms

Number of terms (assuming m input 

dimensions) = (m+2)-choose-2

= (m+2)(m+1)/2

= (as near as makes no difference) m2/2

You may be wondering what those 

’s are doing.

•You should be happy that they do no 

harm

•You’ll find out why they’re there soon. 

2
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QP with basis functions

where ))().(( lklkkl yyQ xΦxΦ=

Subject to these 
constraints:

kCαk ∀≤≤0

Then define:

k
k

KKKK

αK

εyb

maxarg where

.)1(

=

−−= wx

Then classify with:

f(x,w,b) = sign(w. φφφφ(x) - b)

0
1

=∑
=

R

k

kk yα

∑
>

=
0 s.t. 

)(
kαk

kkk yα xΦw

Maximize ∑∑∑
= ==

−
R

k

R

l

kllk

R

k

k Qααα
1 11 2

1
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QP with basis functions

where ))().(( lklkkl yyQ xΦxΦ=

Subject to these 
constraints:

kCαk ∀≤≤0

Then define:

k
k

KKKK

αK

εyb

maxarg where

.)1(

=

−−= wx

Then classify with:

f(x,w,b) = sign(w. φφφφ(x) - b)

0
1

=∑
=

R

k

kk yα

We must do R2/2 dot products to 

get this matrix ready.

Each dot product requires m2/2 

additions and multiplications

The whole thing costs R2 m2 /4. 

Yeeks!

…or does it?…or does it?∑
>

=
0 s.t. 

)(
kαk

kkk yα xΦw

Maximize ∑∑∑
= ==

−
R

k

R

l

kllk

R

k

k Qααα
1 11 2

1
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Just out of casual, innocent, interest, 

let’s look at another function of a and 
b:
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They’re the same!

And this is only O(m) to 
compute!
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QP with Quadratic basis functions

where ))().(( lklkkl yyQ xΦxΦ=

Subject to these 
constraints:
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Then define:
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Then classify with:
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We must do R2/2 dot products to 

get this matrix ready.

Each dot product now only requires 

m additions and multiplications
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Higher Order Polynomials

Polynomial φφφφ(x) Cost to build 
Qkl matrix 

traditionally

Cost if 100 
inputs

φφφφ(a).φφφφ(b) Cost to 
build Qkl

matrix 
efficiently

Cost if 
100 

inputs

Quadratic All m2/2 terms 
up to degree 2

m2 R2 /4 2,500 R2 (a.b+1)2 m R2 / 2 50 R2

Cubic All m3/6 terms 
up to degree 3

m3 R2 /12 83,000 R2 (a.b+1)3 m R2 / 2 50 R2

Quartic All m4/24 
terms up to 

degree 4

m4 R2 /48 1,960,000 R2 (a.b+1)4 m R2 / 2 50 R2
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QP with Quintic basis functions

Maximize ∑∑∑
= ==

+
R

k

R

l

kllk

R

k

k Qααα
1 11

where ))().(( lklkkl yyQ xΦxΦ=

Subject to these 
constraints:

kCαk ∀≤≤0

Then define:

∑
>

=
0 s.t. 

)(
kαk

kkk yα xΦw

k
k

KKKK

αK

εyb

maxarg where

.)1(

=

−−= wx
Then classify with:

f(x,w,b) = sign(w. φφφφ(x) - b)

0
1

=∑
=

R

k

kk yα

We must do R2/2 dot products to get this 
matrix ready.

In 100-d, each dot product now needs 103 
operations instead of 75 million

But there are still worrying things lurking away. 

What are they?
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We must do R2/2 dot products to get this 
matrix ready.

In 100-d, each dot product now needs 103 
operations instead of 75 million

But there are still worrying things lurking away. 

What are they?

•The fear of overfitting with this enormous 
number of terms

•The evaluation phase (doing a set of 
predictions on a test set) will be very 

expensive (why?)
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We must do R2/2 dot products to get this 
matrix ready.

In 100-d, each dot product now needs 103 
operations instead of 75 million

But there are still worrying things lurking away. 

What are they?

•The fear of overfitting with this enormous 
number of terms

•The evaluation phase (doing a set of 
predictions on a test set) will be very 

expensive (why?)

Because each w. φφφφ(x) (see below) 

needs 75 million operations. What 
can be done?

The use of Maximum Margin 
magically makes this not a 

problem
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But there are still worrying things lurking away. 

What are they?

•The fear of overfitting with this enormous 
number of terms

•The evaluation phase (doing a set of 
predictions on a test set) will be very 

expensive (why?)

Because each w. φφφφ(x) (see below) 

needs 75 million operations. What 
can be done?

The use of Maximum Margin 
magically makes this not a 

problem

Only Sm operations (S=#support vectors)
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Why SVMs don’t overfit as much as 
you’d think:

No matter what the basis function, 
there are really only up to R 
parameters: α1, α2 .. αR, and usually 

most are set to zero by the Maximum 

Margin.

Asking for small w.w is like “weight 
decay” in Neural Nets and like Ridge 

Regression parameters in Linear 
regression and like the use of Priors 

in Bayesian Regression---all designed 
to smooth the function and reduce 

overfitting.

Only Sm operations (S=#support vectors)
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SVM Kernel Functions
• K(a,b)=(a . b +1)d is an example of an SVM 

Kernel Function

• Beyond polynomials there are other very high 
dimensional basis functions that can be made 
practical by finding the right Kernel Function

- Radial-Basis-style Kernel Function:

- Neural-net-style Kernel Function:








 −
−=

2

2

2

)(
exp),(

σ

ba
baK

).tanh(),( δκ −= babaK

σ, κ and δ are magic 

parameters that must 
be chosen by a model 

selection method 

such as CV or VCSRM
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Review

Primal Equations

w

2
margin   

margin) (the planes red and blue between Distance
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examples negative allFor 
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examples positive allFor 

threshold -b      

features,input  - x weights, - w      
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Plane Separating
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Euclidean length (“2 norm”) of

the weight vector

What the Equations Mean
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A-

Support 
Vectors
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x´w +b = -1

2 / ||w||2
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The Primal QP
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Dealing with Non-Separable Data

We can add what is called a “slack” variable to each 
example

This variable can be viewed as:

0 if the example is correctly separated

ε “distance” we need to move example to make 
it correct (i.e., the distance from its surface)

“Slack” Variables

A+

A-

ε

Support 

Vectors

The Math Program with Slack Variables

0   

1bxw   

 1bxw   

that such

positive) (all components of sum - norm" one"    

constant scaling C   

example eachfor  one    

featureinput  eachfor  one w   

Cw  min
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rr
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This is the “traditional”
Support Vector Machine

Why the word “Support”?
• All those examples on or on the wrong side of 

the two separating planes are the support vectors

- We’d get the same answer if we deleted all the 
non-support vectors!

- i.e., the “support vectors [examples]” support 
the solution

But what does a support vector mean?

• Support vectors are either:

- Misclassifications

- Data points that are just barely within the class (Correct 
points that could most easily be misclassified)

• In high dimensions, support vectors determine the capacity 
of the classifier

• Large margins typically involve fewer support vectors

• Intuition (and intuition only):

- Wide margin = lots of room to maneuver

- Lots of room to maneuver = fewer bends

- Fewer bends = fewer support vectors
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How do we characterize “power”?
• Different machines have different amounts of 

“power”.

• Tradeoff between:

- More power: Can model more complex 
classifiers but might overfit.

- Less power: Not going to overfit, but restricted 
in what it can model.

• How do we characterize the amount of power?

A learning machine
• A learning machine f takes an input x and 

transforms it, somehow using weights α, into a 
predicted output yest = +/- 1

f x

α

yest

α is some vector of 
adjustable parameters

Some definitions
• Given some machine f

• And under the assumption that all training points (xk,yk) were drawn 
i.i.d from some distribution.

• And under the assumption that future test points will be drawn from 
the same distribution

• Define

icationMisclassif

ofy Probabilit
),(

2

1
)(TESTERR)( =





−== ααα xfyER

Official terminology
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iedmisclassifSet 

TrainingFraction 
),(

2

11
)(TRAINERR)(

1

=−== ∑
=

R

k

kk

emp xfy
R

R ααα

R = #training set 

data points

Vapnik-Chervonenkis dimension

• Given some machine f, let h be its VC dimension.

• h is a measure of f’s power (h does not depend on the choice of training set)

• Vapnik showed that with probability 1-η







−= ),(

2

1
)(TESTERR αα xfyE ∑

=

−=
R

k

kk xfy
R 1

),(
2

11
)(TRAINERR αα

R

hRh )4/log()1)/2(log(
)(TRAINERR)(TESTERR

η
αα

−+
+≤

This gives us a way to estimate the error on 

future data based only on the training error 
and the VC-dimension of f

Structural Risk Minimization
• Let φ(f) = the set of functions representable by f.

• Suppose 

• Then                                                  

• We’re trying to decide which machine to use.

• We train each machine and make a table…

i fi TRAINERR VC-Conf Probable upper bound 

on TESTERR

Choice

1 f1

2 f2

3 f3 

4 f4

5 f5

6 f6

R

hRh )4/log()1)/2(log(
)(TRAINERR)(TESTERR

η
αα

−+
+≤

)()()( 21 nfφfφfφ L⊆⊆

)()()( 21 nfhfhfh L≤≤



15

SVMs and PAC Learning
• Theorems connect PAC theory to the size of the 

margin

• Basically, the larger the margin, the better the 
expected accuracy

• See, for example, Chapter 4 of Support Vector 
Machines by Christianini and Shawe-Taylor, 
Cambridge University Press, 2002

VC-dimension of an SVM
• Very very very loosely speaking there is some theory which 

under some different assumptions puts an upper bound on 
the VC dimension as

• where

- Diameter is the diameter of the smallest sphere that 
can enclose all the high-dimensional term-vectors 
derived from the training set.

- Margin is the smallest margin we’ll let the SVM use

• This can be used in SRM (Structural Risk Minimization) for 
choosing the polynomial degree, RBF σ, etc.

- But most people just use Cross-Validation










Margin

Diameter

Copyright © 2001, 2003, Andrew W. Moore

PAC and the Number of Support Vectors
• The fewer the support vectors, the better the 

generalization will be

• Recall, non-support vectors are

- Correctly classified

- Don’t change the learned model if left out of the training 
set

• So

examples  training#

ctorssupport ve #
     rateerror out oneleave ≤−−

Understanding LOO

• LOO estimates probability that a classifier trained on n-1 
points gets the nth point right

• For largish n, LOO is (sort of) an average of n such draws

• For SVM with k support vectors, n training points

- At least n-k draws will produce the same classifier

- At least this many will get the next point right

• Suggests empirical error of our SVM should be at least as 
low as k/n

Finding Non-Linear Separating Surfaces

• Map inputs into new space

Example: features   x1 x2

5     4

Example: features   x1 x2       x1
2 x2

2 x1*x2

5     4     25      16        20

• Solve SVM program in this new space

- Computationally complex if many features

- But a clever trick exists

The Kernel Trick

• Optimization problems often/always have a 
“primal” and a “dual” representation

- We just saw the primal formulation

- The dual formulation is better for the case of a 
non-linear separating surface
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Generalizing the Dot Product
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Visualizing the Kernel
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function

process is similar to what 
hidden units do in ANNs but 
kernel is user chosen

QP with kernel
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j
j

jkjj

αj

xxεyb

maxarg where

),k()1(
0α s.t.k k

=

−−= ∑
>

Extensions
• Class probabilities

- Use distance from boundary

- Fit a logistic sigmoid to output of SVM (icky)

- Logistic regression variants of SVM exist, but (as 
with ordinary logistic regression) don’t have 
direct solutions

• Support vector regression

- Similar to SVM

- Instead of >1, <-1, add constraints for true 
target values

© 2007 Chris Bishop

Relevance Vector Machine

• Bayesian Version of SVM

• Provides probabilities on outputs

• Tends to produce sparser solutions

• Requires non-linear optimization

• Can be slow

Doing multi-class classification
• SVMs can only handle two-class outputs (i.e. a 

categorical output variable with arity 2).

• What can be done?

• Answer: with output arity N, learn N SVM’s

- SVM 1 learns “Output==1” vs “Output != 1”

- SVM 2 learns “Output==2” vs “Output != 2”

- :

- SVM N learns “Output==N” vs “Output != N”

• Then to predict the output for a new input, just 
predict with each SVM and find out which one puts 
the prediction the furthest into the positive region.

Copyright © 2001, 2003, Andrew W. Moore
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Key SVM Ideas
• Maximize the margin between positive and 

negative examples (connects to PAC theory)

• Penalize errors in non-separable case

• Only the support vectors contribute to the solution

• Kernels map examples into a new, usually non-
linear space

- We implicitly do dot products in this new space 
(in the “dual” form of the SVM program)

- Kernels are a separate idea from SVMs 
(remember we introduced them for GP), but 
they combine very nicely with SVMs

SVM Performance
• Anecdotally they work very very well indeed.

• Example: They are currently the best-known classifier on a 
well-studied hand-written-character recognition benchmark

• Another Example: AWM knows several reliable people 
doing practical real-world work who claim that SVMs have 
saved them when their other favorite classifiers did poorly.  
(REP too)

• There was a lot of excitement and religious fervor about 
SVMs and Kernel machines in 2004.  In 2007, SVMs have 
cooled off, but they’re still pretty neat and useful!

• Despite this, some practitioners are a little skeptical.

Copyright © 2001, 2003, Andrew W. Moore

SVM Implementations

• Sequential Minimal Optimization, SMO, efficient 
implementation of SVMs, Platt 

- in Weka

• SVMlight

- http://svmlight.joachims.org/

• Good implementations will tend to have quadratic 
run time in the number of data points (may be less 
of number of support vectors is small)

References
• Tutorial on VC-dimension and Support Vector 

Machines: 

C. Burges. A tutorial on support vector machines for 
pattern recognition. Data Mining and Knowledge 
Discovery, 2(2):955-974, 1998. 
http://citeseer.nj.nec.com/burges98tutorial.html 

• The VC/SRM/SVM Bible:

Statistical Learning Theory by Vladimir Vapnik, Wiley-
Interscience; 1998
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Primal versus Dual Space
• Primal – “weight space”

- Weight features to make output decision

• Dual – “training-examples space”

- Weight distance (which is based on the 
features) to training examples

)sgn()( newnew xwxh
rrr
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[ ])xxyα(sgn)xh( newj

#examples
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rrr
⋅= ∑

=

Why not use dual perceptrons?

• Perceptrons don’t maximize the margin

• No regularization

• Less pressure to produce sparse classifiers

• More risk of overfitting


