Support Vector Machines CPS 271

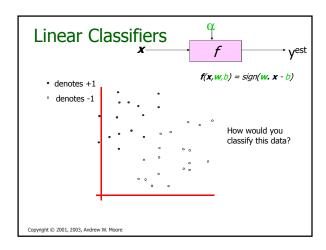
Material from: Lise Getoor, Andrew Moore <u>http://www.cs.cmu.edu/~awm/tutorials</u> Tom Dietterich, Andrew Ng, Michael Littman, Rich Maclin

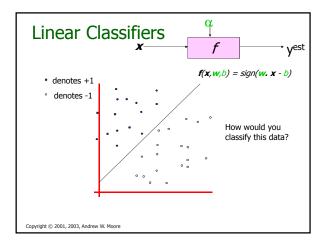
3 Views

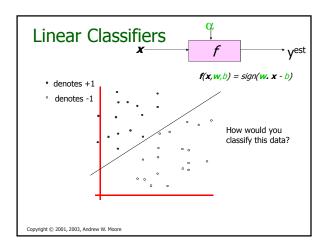
- Geometric
 Maximizing Margin
- Kernel Methods
 - Making nonlinear decision boundaries linearEfficiently!
- Capacity
 - Structural Risk Minimization

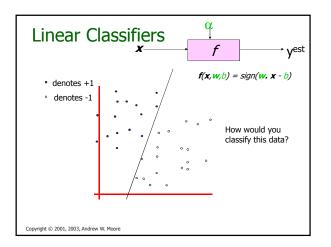
SVM History

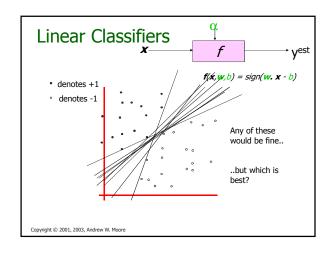
- SVM is a classifier derived from statistical learning theory by Vapnik and Chervonenkis
- SVM was first introduced by Boser, Guyon and Vapnik in COLT-92
- SVM became famous when, using pixel maps as input, it gave accuracy comparable to NNs with hand-designed features in a handwriting recognition task
- SVM is closely related to:
 - Kernel machines (a generalization of SVMs), large margin classifiers, reproducing kernel Hilbert space, Gaussian process, Boosting

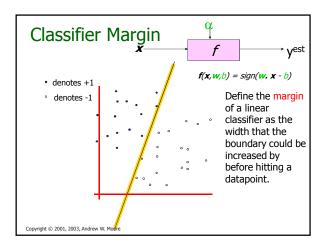


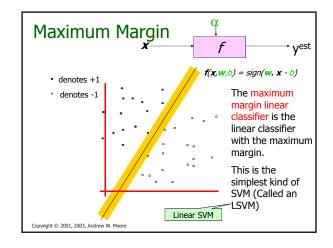


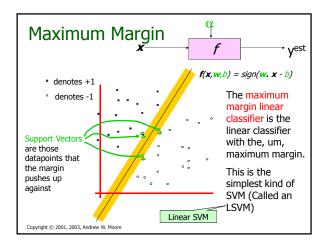


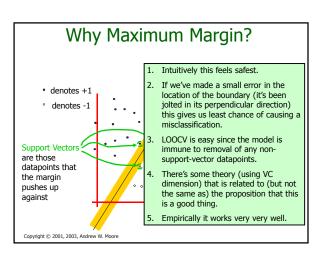


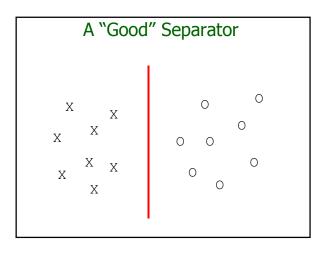


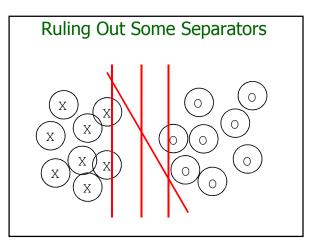


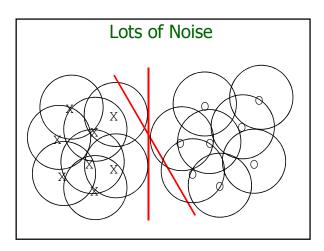


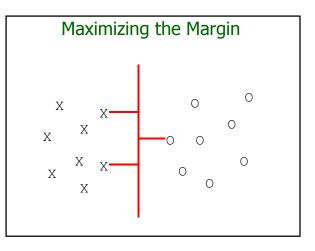


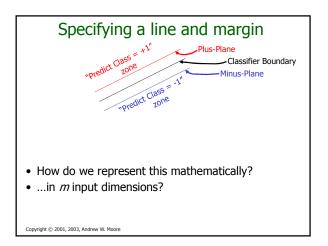


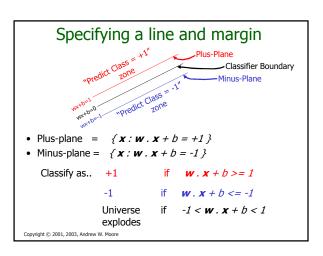


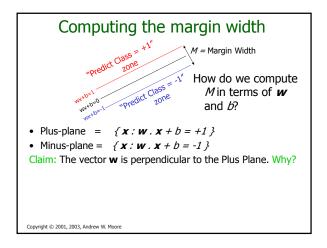


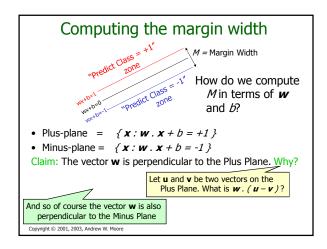


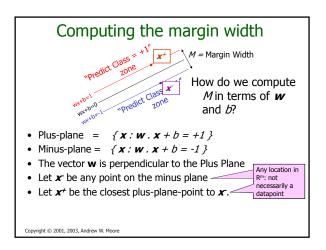


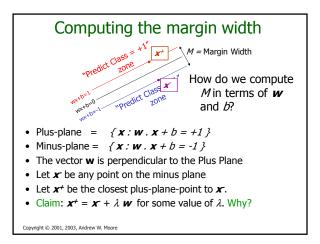


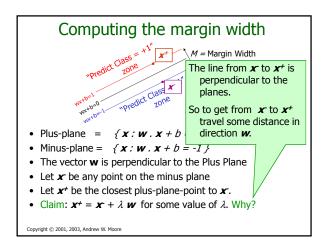


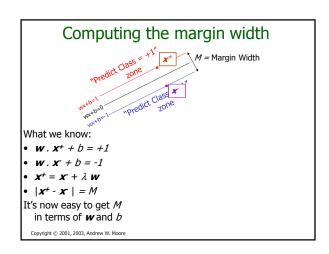


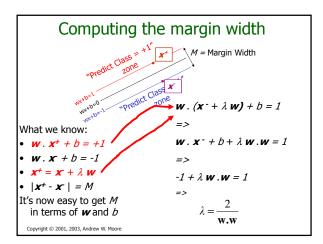


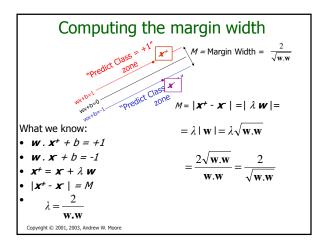


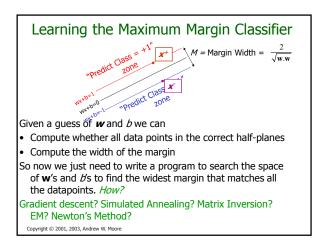


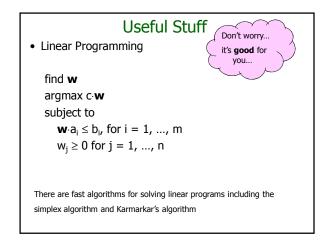


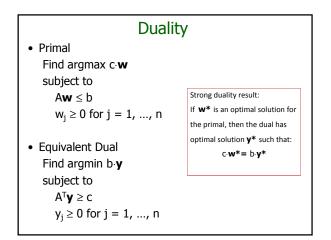


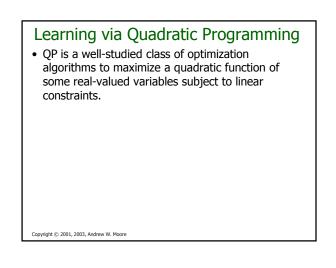


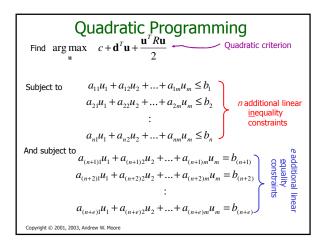


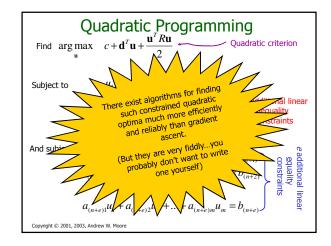


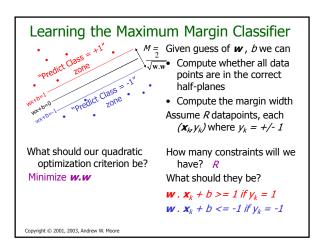


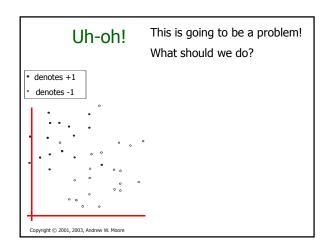


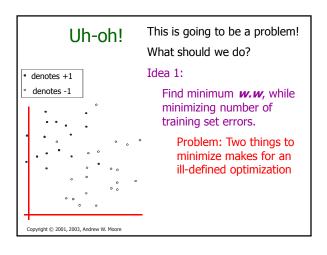


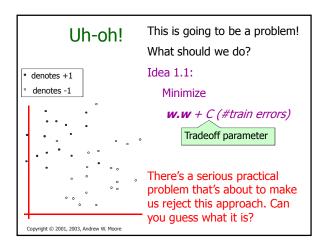


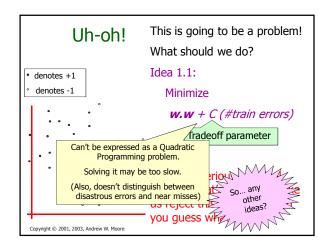


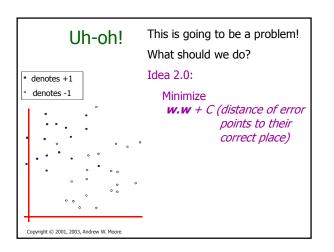


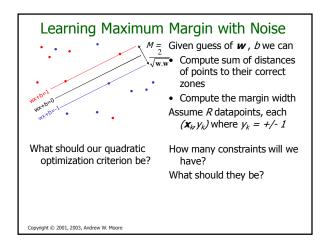


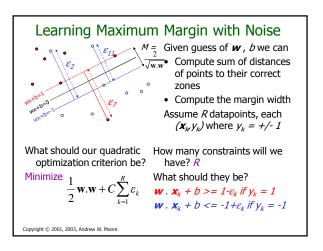


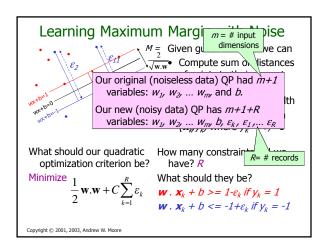


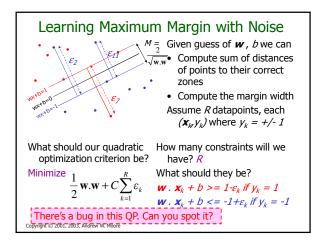


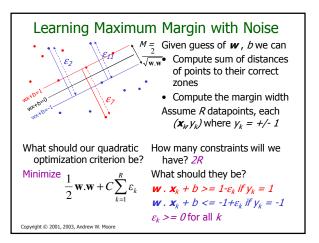


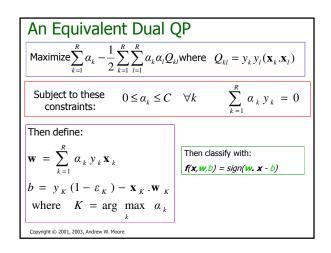


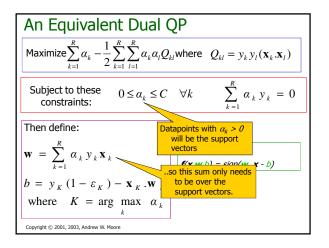


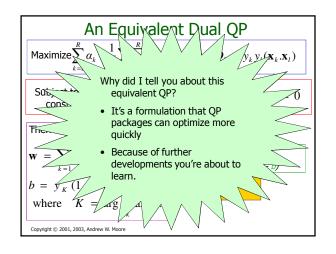


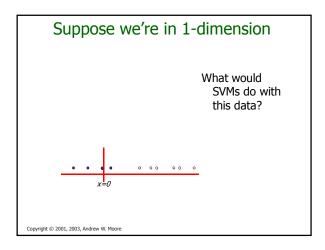


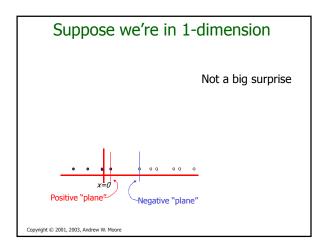


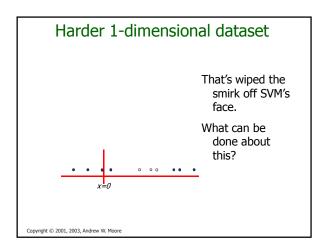


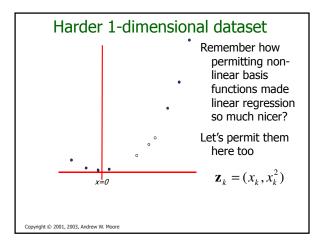


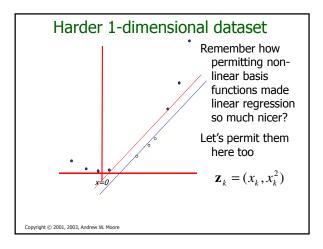


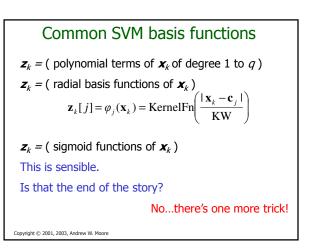


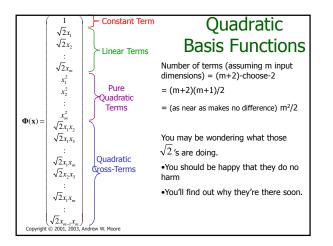


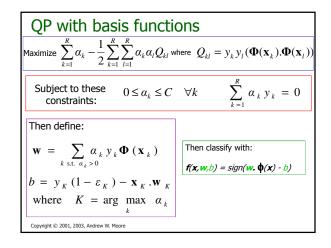


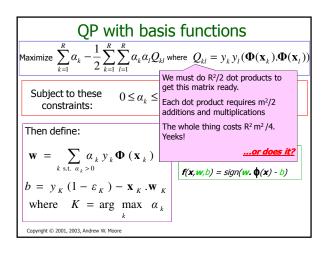


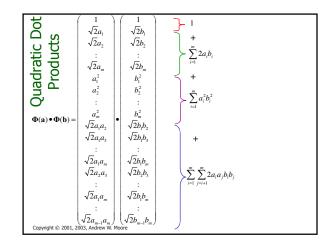


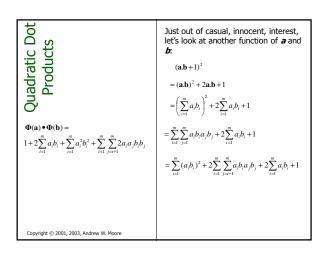


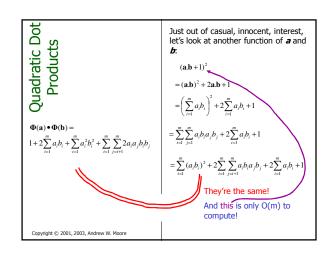


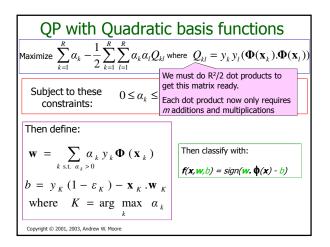




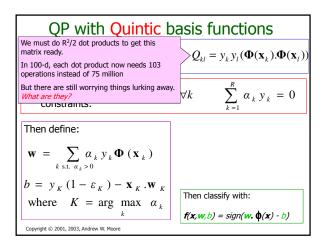


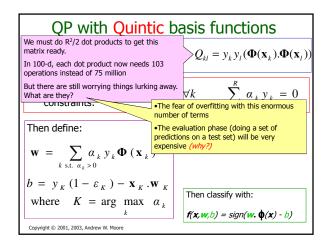


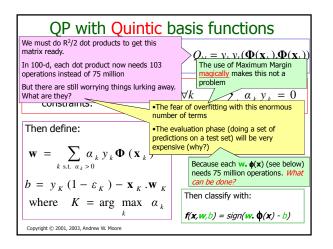


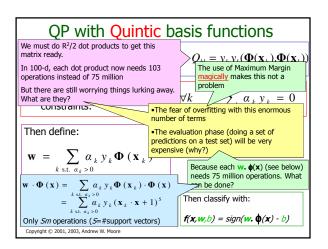


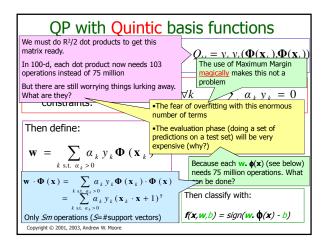
Polynomial	\$ (x)	Cost to build Q_{kl} matrix traditionally	Cost if 100 inputs	ф(а).ф(b)	Cost to build Q_{kl} matrix efficiently	Cost if 100 inputs
Quadratic	All <i>m²/2</i> terms up to degree 2	m² R² /4	2,500 <i>R</i> ²	(a.b +1) ²	m R ² / 2	50 <i>R</i> ²
Cubic	All <i>m³/6</i> terms up to degree 3	m ³ R ² /12	83,000 <i>R</i> ²	(a . b +1) ³	m R² / 2	50 <i>R</i> ²
Quartic	All m ⁴ /24 terms up to degree 4	m ⁴ R ² /48	1,960,000 R ²	(a . b +1)⁴	m R² / 2	50 <i>R</i> ²

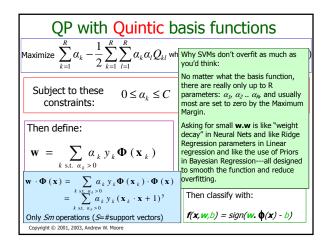


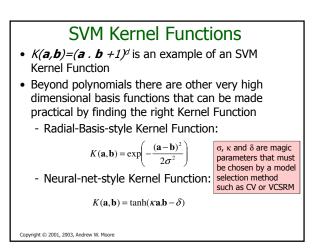


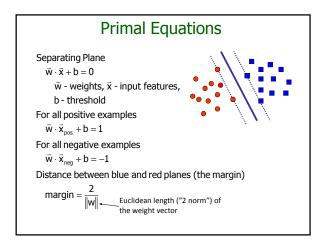


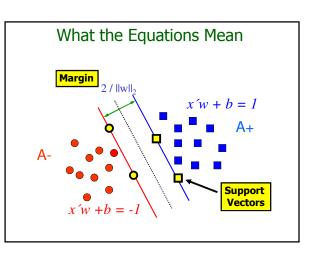












The Primal QP				
$\min_{\vec{w},b} \ \vec{w}\ ^2$				
such that				
$\vec{w} \cdot \vec{x}_{pos} + b \ge 1$ (for + examples)				
$\vec{w} \cdot \vec{x}_{neg} + b \le -1$ (for – examples)				
Note : \vec{w} , b are our adjustable parameters				

We can now use existing optimization packages to find a solution to the above (a global optimal soln)

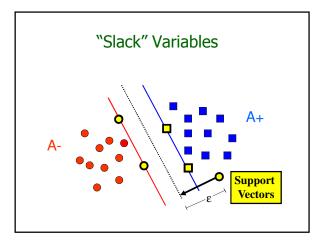
- -

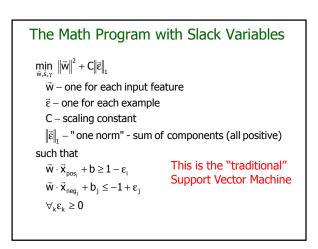
Dealing with Non-Separable Data

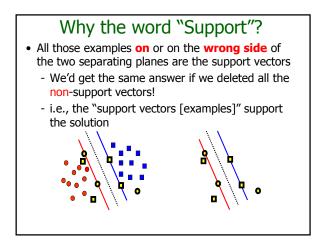
We can add what is called a "slack" variable to each example

This variable can be viewed as:

- 0 if the example is correctly separated
- $\epsilon\,$ "distance" we need to move example to make it correct (i.e., the distance from its surface)







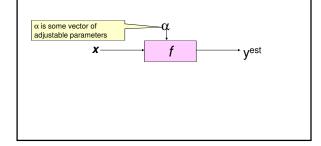
But what does a support vector mean?

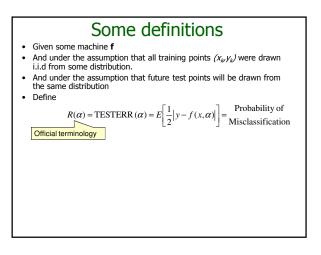
- Support vectors are either:
 - Misclassifications
 - Data points that are just barely within the class (Correct points that could most easily be misclassified)
- In high dimensions, support vectors determine the capacity of the classifier
- Large margins typically involve fewer support vectors
- Intuition (and intuition *only*):
 - Wide margin = lots of room to maneuver
 - Lots of room to maneuver = fewer bends
 - Fewer bends = fewer support vectors

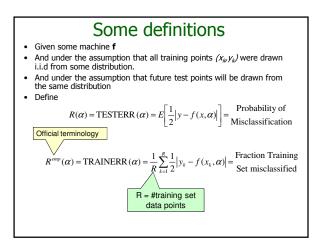
How do we characterize "power"?

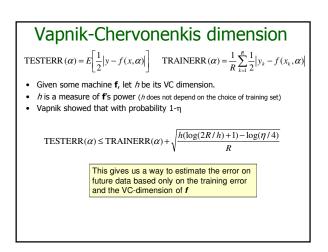
- Different machines have different amounts of "power".
- Tradeoff between:
 - More power: Can model more complex classifiers but might overfit.
 - Less power: Not going to overfit, but restricted in what it can model.
- How do we characterize the amount of power?

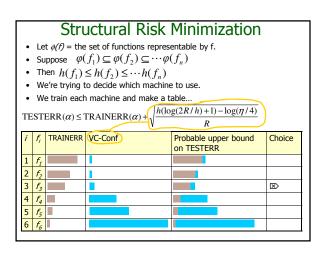
A learning machine A learning machine *f* takes an input *x* and transforms it, somehow using weights α, into a predicted output y^{est} = +/-1





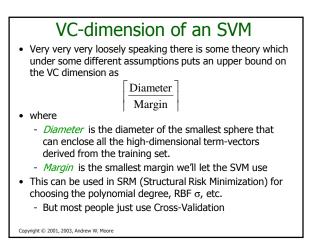






SVMs and PAC Learning

- Theorems connect PAC theory to the size of the *margin*
- Basically, the *larger* the margin, the better the expected accuracy
- See, for example, Chapter 4 of *Support Vector Machines* by Christianini and Shawe-Taylor, Cambridge University Press, 2002



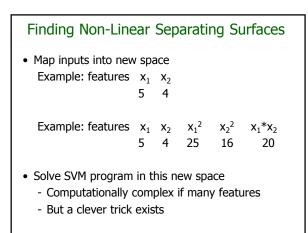
PAC and the Number of Support Vectors

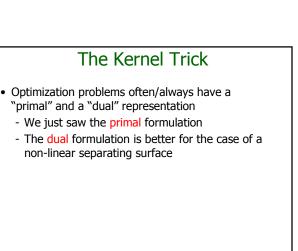
- The fewer the support vectors, the better the generalization will be
- Recall, non-support vectors are
 - Correctly classified
 - Don't change the learned model if left out of the training set
- So

 $|eave-one-out \ error \ rate \leq \frac{\# \ support \ vectors}{\# \ training \ examples}$

Understanding LOO

- LOO estimates probability that a classifier trained on n-1 points gets the nth point right
- For largish n, LOO is (sort of) an average of n such draws
- For SVM with k support vectors, n training points
 At least n-k draws will produce the same classifier
 At least this many will get the next point right
- Suggests empirical error of our SVM should be at least as low as $\ensuremath{\mathsf{k/n}}$





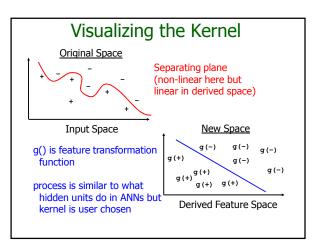
Generalizing the Dot Product

We can generalize

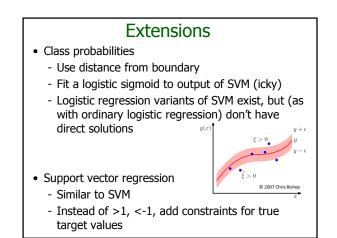
 $Dot_Product(\vec{x}_i, \vec{x}_j) \equiv \vec{x}_i \cdot \vec{x}_j$ to other "kernel functions"

e.g., $K(\vec{x}_i, \vec{x}_j) \equiv (\vec{x}_i \cdot \vec{x}_j)^{\delta}$

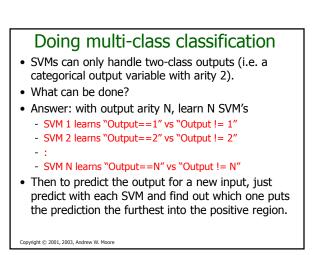
- An acceptable kernel (usually non linear) maps the original features into a new space implicitly
- in this new space we're computing a dot product
- we don't need to explicitly know the features in the new space
- usually more efficient than directly converting to new space



QP with kernel				
Maximize $\sum_{k=1}^{R} \alpha_k - \frac{1}{2} \sum_{k=1}^{R} \sum_{l=1}^{R} \alpha_k \alpha_l Q_{kl}$ where $Q_{kl} = y_k y_l k(\mathbf{x}_k, \mathbf{x}_l)$				
Subject to these $0 \le \alpha_k \le C \forall k \qquad \sum_{k=1}^R \alpha_k y_k = 0$ constraints:				
Then classify with:				
$f(x, \mathbf{w}, b) = sign\left(\sum_{k \text{ s.t. } a_k > 0} a_k y_k k(x, x_n) + b\right)$				
$b = y_{j}(1 - \varepsilon_{j}) - \sum_{\substack{k \text{ s.t. } \alpha_{k} > 0}} k(x_{k}, x_{j})$				
where $j = \arg \max \alpha_j$				
j Copyright © 2001, 2003, Andrew W. Moore				



- Provides probabilities on outputs
- Tends to produce sparser solutions
- Requires non-linear optimization
- Can be slow



Key SVM Ideas

- Maximize the margin between positive and negative examples (connects to PAC theory)
- Penalize errors in non-separable case
- Only the support vectors contribute to the solution
- Kernels map examples into a new, usually nonlinear space
 - We implicitly do dot products in this new space (in the "dual" form of the SVM program)
 - Kernels are a separate idea from SVMs (remember we introduced them for GP), but they combine very nicely with SVMs

SVM Performance

- Anecdotally they work very very well indeed.
- Example: They are currently the best-known classifier on a well-studied hand-written-character recognition benchmark
- Another Example: AWM knows several reliable people doing practical real-world work who claim that SVMs have saved them when their other favorite classifiers did poorly. (REP too)
- There was a lot of excitement and religious fervor about SVMs and Kernel machines in 2004. In 2007, SVMs have cooled off, but they're still pretty neat and useful!
- Despite this, some practitioners are a little skeptical.

Copyright © 2001, 2003, Andrew W. Moore

SVM Implementations

- Sequential Minimal Optimization, SMO, efficient implementation of SVMs, Platt
- in Weka
- SVM^{light}
 - http://svmlight.joachims.org/
- Good implementations will tend to have quadratic run time in the number of data points (may be less of number of support vectors is small)

References

- Tutorial on VC-dimension and Support Vector Machines:
 - C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):955-974, 1998. http://citeseer.nj.nec.com/burges98tutorial.html
- The VC/SRM/SVM Bible: Statistical Learning Theory by Vladimir Vapnik, Wiley-Interscience; 1998

Copyright © 2001, 2003, Andrew W. Moore

LTUs/Perceptrons Re-Visited

In perceptrons, if classification +1 and -1,

$$\vec{w}_{k+1} = \vec{w}_k + \eta \ y_i \vec{x}_i$$

if the example \mathbf{x}_i is currently misclassified So

$$\vec{w}_{final} = \sum_{i=1}^{\#examples} a_i y_i \vec{x}_i$$

where a_i is some number of times we get \vec{x}_i wrong and change weights

This assumes $\vec{w}_{initial} = \vec{0}$ (all zero)

Dual Form of the Perceptron Learning Rule
output of perceptron =
$$h(\vec{x}) = sgn(\vec{w} \cdot \vec{x})$$

 $sgn(z) = \begin{pmatrix} +1 & \text{if } z \ge 0 \\ -1 & \text{otherwise} \end{pmatrix}$
So $h(\vec{x}) = sgn\left(\begin{bmatrix} escamples}{\sum_{i=1}^{n} a_i y_i \vec{x}_i \end{bmatrix} \cdot \vec{x} \right)$
 $= sgn(\sum_i a_i y_i [\vec{x}_i \cdot \vec{x}])$
New (i.e., dual) perceptron algorithm :
For each example i
if $y_i * \left(\begin{bmatrix} escamples}{\sum_{j=1}^{n} a_j y_j [\vec{x}_j \cdot \vec{x}_i] \end{bmatrix} \le 0 \quad (i.e., \text{ predicted}_i \neq \text{actual}_i)$
then $a_i = a_i + 1 \quad (\text{counts errors})$

Primal versus Dual Space

- Primal "weight space"
 - Weight features to make output decision

$$h(\vec{x}_{new}) = \operatorname{sgn}(\vec{w} \cdot \vec{x}_{new})$$

Dual – "training-examples space"
 Weight distance (which is based on the features) to training examples

$$h(\vec{x}_{\text{new}}) = \text{sgn}\left(\sum_{j=1}^{\text{\#examples}} a_j y_j \left[\vec{x}_j \cdot \vec{x}_{\text{new}} \right] \right)$$

Why not use dual perceptrons?

- Perceptrons don't maximize the margin
- No regularization
- Less pressure to produce sparse classifiers
- More risk of overfitting