Support Vector Machines CPS 271

Material from:
Lise Getoor,
Andrew Moore http://www.cs.cmu.edu/~awm/tutorials Tom Dietterich, Andrew Ng, Michael Littman, Rich Maclin

3 Views

- Geometric
- Maximizing Margin
- Kernel Methods
- Making nonlinear decision boundaries linear
- Efficiently!
- Capacity
- Structural Risk Minimization

SVM History

- SVM is a classifier derived from statistical learning theory by Vapnik and Chervonenkis
- SVM was first introduced by Boser, Guyon and Vapnik in COLT-92
- SVM became famous when, using pixel maps as input, it gave accuracy comparable to NNs with hand-designed features in a handwriting recognition task
- SVM is closely related to:
- Kernel machines (a generalization of SVMs), large margin classifiers, reproducing kernel Hilbert space, Gaussian process, Boosting

Specifying a line and margin

- How do we represent this mathematically?
- ...in m input dimensions?

Computing the margin width

- Plus-plane $=\{\boldsymbol{x}: \boldsymbol{w} \cdot \boldsymbol{x}+b=+1\}$
- Minus-plane $=\{\boldsymbol{x}: \boldsymbol{w} . \boldsymbol{x}+b=-1\}$

Claim: The vector \mathbf{w} is perpendicular to the Plus Plane. Why?

Copyright © 2001, 2003, Andrew W. Moore

Computing the margin width

- Plus-plane $=\{\boldsymbol{x}: \boldsymbol{w}, \boldsymbol{x}+b=+1\}$
- Minus-plane $=\{\boldsymbol{x}: \boldsymbol{w}, \boldsymbol{x}+b=-1\}$
- The vector \mathbf{w} is perpendicular to the Plus Plane
- Let \boldsymbol{x} be any point on the minus plane
- Let \boldsymbol{x}^{+}be the closest plus-plane-point to \boldsymbol{x}. Any locatit
R: not R^{m} : not
necessarily

Copyright © 2001, 2003, Andrew W. Moore

Computing the margin width

- Plus-plane $=\{\boldsymbol{x}: \boldsymbol{w} \cdot \boldsymbol{x}+b$
$M=$ Margin Width
The line from \boldsymbol{x} to \boldsymbol{x}^{+}is perpendicular to the planes.
So to get from \boldsymbol{x} to \boldsymbol{x}^{+} travel some distance in direction \boldsymbol{w}.
- Minus-plane $=\{\boldsymbol{x}: \boldsymbol{w}, \boldsymbol{x}+b=-1\}$
- The vector \mathbf{w} is perpendicular to the Plus Plane
- Let \boldsymbol{x} be any point on the minus plane
- Let \boldsymbol{x}^{+}be the closest plus-plane-point to \boldsymbol{x}.
- Claim: $\boldsymbol{x}^{+}=\boldsymbol{x}+\lambda \boldsymbol{w}$ for some value of λ. Why?

Copyright © 2001, 2003, Andrew W. Moore

Computing the margin width

- Plus-plane $=\{\boldsymbol{x}: \boldsymbol{w} \cdot \boldsymbol{x}+b=+1\}$
- Minus-plane $=\{\boldsymbol{x}: \boldsymbol{w} \cdot \boldsymbol{x}+b=-1\}$

Claim: The vector \mathbf{w} is perpendicular to the Plus Plane. Why?

Let \mathbf{u} and \mathbf{v} be two vectors on the Plus Plane. What is $\boldsymbol{w} .(\boldsymbol{u}-\boldsymbol{v})$

And so of course the vector \mathbf{w} is also
perpendicular to the Minus Plane
Copyright © 2001, 2003, Andrew W. Moore

Computing the margin width

- Plus-plane $=\{\boldsymbol{x}: \boldsymbol{w}, \boldsymbol{x}+b=+1\}$
- Minus-plane $=\{\boldsymbol{x}: \boldsymbol{w} \cdot \boldsymbol{x}+b=-1\}$
- The vector \mathbf{w} is perpendicular to the Plus Plane
- Let \boldsymbol{x} be any point on the minus plane
- Let \boldsymbol{x}^{+}be the closest plus-plane-point to \boldsymbol{x}.
- Claim: $\boldsymbol{x}^{+}=\boldsymbol{x}+\lambda \boldsymbol{w}$ for some value of λ. Why?

Copyright © 2001, 2003, Andrew W. Moore

Computing the margin width

What we know:

- w. $\boldsymbol{x}^{+}+b=+1$
- w. $\boldsymbol{x}+b=-1$
- $\boldsymbol{x}^{+}=\boldsymbol{x}+\lambda \boldsymbol{w}$
- $\left|\boldsymbol{x}^{+}-\boldsymbol{x}\right|=M$

It's now easy to get M in terms of \boldsymbol{w} and b
Copyright © 2001, 2003, Andrew W. Moore

Learning the Maximum Margin Classifier

Given a guess off \boldsymbol{w} and b we can

- Compute whether all data points in the correct half-planes
- Compute the width of the margin

So now we just need to write a program to search the space of \mathbf{w} 's and b 's to find the widest margin that matches all the datapoints. How?
Gradient descent? Simulated Annealing? Matrix Inversion? EM? Newton's Method?
Copyright © 2001, 2003, Andrew w. Moore

Computing the margin width

What we know:

$$
=\lambda|\mathbf{w}|=\lambda \sqrt{\mathbf{w} \cdot \mathbf{w}}
$$

- w. $\boldsymbol{x}^{+}+b=+1$
- w. $\boldsymbol{x}+b=-1$
- $\boldsymbol{x}^{+}=\boldsymbol{x}+\lambda \boldsymbol{w}$
- $\left|\boldsymbol{x}^{+}-\boldsymbol{x}\right|=M$
$=\frac{2 \sqrt{\mathbf{W} \cdot \mathbf{W}}}{\mathbf{W} \cdot \mathbf{W}}=\frac{2}{\sqrt{\mathbf{W} \cdot \mathbf{W}}}$
- $\lambda=\frac{2}{\mathbf{w . w}}$

Copyright © 2001, 2003, Andrew W. Moore

Learning via Quadratic Programming

- QP is a well-studied class of optimization algorithms to maximize a quadratic function of some real-valued variables subject to linear constraints.

Quadratic Programming Find $\underset{\mathbf{u}}{\arg \max } c+\mathbf{d}^{T} \mathbf{u}+\frac{\mathbf{u}^{T} R \mathbf{u}}{2}$ Quadratic criterion Subject to $\left.\begin{array}{c} a_{11} u_{1}+a_{12} u_{2}+\ldots+a_{1 m} u_{m} \leq b_{1} \\ a_{21} u_{1}+a_{22} u_{2}+\ldots+a_{2 m} u_{m} \leq b_{2} \\ : \\ a_{n 1} u_{1}+a_{n 2} u_{2}+\ldots+a_{n m} u_{m} \leq b_{n} \end{array}\right\}$ n additional linear inequality constraints And subject to Copyright (c) 2001, 2003, Andrew W. Moore

Learning the Maximum Margin Classifier
-

Uh-oh!	This is going to be a problem! What should we do?
- - denotes +1 - denotes -1	
Copprighte 2001, 203, Andrew w. Moore	

Uh-oh!	This is going to be a problem! What should we do?
- denotes +1	Idea 1: Find minimum w,w, while
	minimizing number of training set errors.
	Problem: Two things to minimize makes for an ill-defined optimization
Coprisitte 2001,2003, Antrew W. Moore	

Uh-oh!	This is going to be a problem! What should we do?
- denotes +1 - denotes -1	Idea 2.0: Minimize
	$\boldsymbol{w} \boldsymbol{w}+C$ (distance of error points to their correct place)
Coprigite 2001,2033, Andiew W. M More	

Learning Maximum Margin with Noise

What should our quadratic optimization criterion be?	have? R $R=$ \# records
Minimize $\frac{1}{2} \mathbf{w} . \mathbf{w}+C \sum_{k=1}^{R} \varepsilon_{k}$	What should they be? $\begin{aligned} & \text { w. } \boldsymbol{x}_{k}+b>=1-\varepsilon_{k} \text { if } y_{k}=1 \\ & \text { w. } \boldsymbol{x}_{k}+b<=-1+\varepsilon_{k} \text { if } y_{k}=-1 \end{aligned}$

Learning Maximum Margin with Noise

An Equivalent Dual QP	
$\text { Maximize } \sum_{k=1}^{R} \alpha_{k}-\frac{1}{2} \sum_{k=1}^{R} \sum_{l=1}^{R} \alpha_{k} \alpha_{l} Q_{k l} \text { where } Q_{k l}=y_{k} y_{l}\left(\mathbf{x}_{k} \cdot \mathbf{x}_{l}\right)$	
Subject to these $\quad 0 \leq \alpha_{k} \leq$ constraints:	$\forall k \quad \sum_{k=1}^{R} \alpha_{k} y_{k}=0$
Then define:$\begin{aligned} & \mathbf{w}=\sum_{k=1}^{R} \alpha_{k} y_{k} \mathbf{x}_{k} \\ & b=y_{K}\left(1-\varepsilon_{K}\right)-\mathbf{x}_{K} \cdot \mathbf{w}_{K} \\ & \text { where } K=\underset{k}{\arg \max _{k}} \alpha_{k} \end{aligned}$	Then classify with: $\boldsymbol{f}(\boldsymbol{x}, w, b)=\operatorname{sign}(w, \boldsymbol{x}-b)$
Copyrigh © 2001, 2003, Andrew W. Moore	

An Equivalent Dual QP	
Maximize $\sum_{k=1}^{R} \alpha_{k}-\frac{1}{2} \sum_{k=1}^{R} \sum_{l=1}^{R} \alpha_{k} \alpha_{l} Q_{k l}$ where $Q_{k l}=y_{k} y_{l}\left(\mathbf{x}_{k} \cdot \mathbf{x}_{l}\right)$	
Subject to these constraints:	$C \quad \forall k \quad \sum_{k=1}^{R} \alpha_{k} y_{k}=0$
Then define: Datapoints with $\alpha_{k}>0$ will be the support vectors $\mathbf{w}=\sum_{k=1}^{R} \alpha_{k} y_{k} \mathbf{x}_{k}$.so this sum only needs	
Copyright © 2001, 2003, Andrew W. Moore	

Harder 1-dimensional dataset

Copyright © 2001, 2003, Andrew W. Moore

\rightarrow

Suppose we're in 1-dimension

Not a big surprise

Copyright © 2001, 2003, Andrew W. Moore

Harder 1-dimensional dataset

Common SVM basis functions

$\boldsymbol{z}_{k}=\left(\right.$ polynomial terms of \boldsymbol{x}_{k} of degree 1 to $\left.q\right)$
$\boldsymbol{z}_{k}=\left(\right.$ radial basis functions of $\left.\boldsymbol{x}_{k}\right)$

$$
\mathbf{z}_{k}[j]=\varphi_{j}\left(\mathbf{x}_{k}\right)=\operatorname{KernelFn}\left(\frac{\left|\mathbf{x}_{k}-\mathbf{c}_{j}\right|}{\mathrm{KW}}\right)
$$

$\boldsymbol{z}_{k}=\left(\right.$ sigmoid functions of $\left.\boldsymbol{x}_{k}\right)$
This is sensible.
Is that the end of the story?
No...there's one more trick!
Copyright © 2001, 2003, Andrew W. Moore

	Quadratic Basis Functions Number of terms (assuming m input dimensions) $=(\mathrm{m}+2)$-choose-2 $=(m+2)(m+1) / 2$ $=$ (as near as makes no difference) $\mathrm{m}^{2} / 2$ You may be wondering what those $\sqrt{2}$'s are doing. - You should be happy that they do no harm - You'll find out why they're there soon.

$\Phi(\mathbf{a}) \bullet \Phi(\mathbf{b})=$	1 $\sqrt{2} a_{1}$ $\sqrt{2} a_{2}$ \vdots $\sqrt{2} a_{m}$ a_{1}^{2} a_{2}^{2} \vdots a_{m}^{2} $\sqrt{2} a_{1} a_{2}$ $\sqrt{2} a_{1} a_{3}$ \vdots $\sqrt{2} a_{1} a_{m}$ $\sqrt{2} a_{2} a_{3}$ \vdots $\sqrt{2} a_{1} a_{m}$ \vdots $\sqrt{2} a_{m-1} a_{m}$ and	$\left(\begin{array}{c}1 \\ \sqrt{2} b_{1} \\ \sqrt{2} b_{2} \\ \vdots \\ \sqrt{2} b_{m} \\ b_{1}^{2} \\ b_{2}^{2} \\ \vdots \\ b_{m}^{2} \\ \sqrt{2} b_{1} b_{2} \\ \sqrt{2} b_{1} b_{3} \\ : \\ \sqrt{2} b_{1} b_{m} \\ \sqrt{2} b_{2} b_{3} \\ : \\ \sqrt{2} b_{1} b_{m} \\ : \\ \sqrt{2} b_{m-1} b_{m}\end{array}\right)$	$\left\{\begin{array}{l} \left\{\begin{array}{l} 1 \\ + \\ \sum_{i=1}^{m} 2 a_{i} b_{i} \\ + \\ \sum_{i=1}^{m} a_{i}^{2} b_{i}^{2} \end{array}\right. \\ + \\ +\sum_{i=1}^{m} \sum_{j=i+1}^{m} 2 a_{i} a_{j} b_{i} b_{j} \end{array}\right.$

QP with Quadratic basis functions	
Maximize $\sum_{k=1}^{R} \alpha_{k}-\frac{1}{2} \sum_{k=1}^{R} \sum_{l=1}^{R} \alpha_{k} \alpha_{l} Q_{k l}$ where $Q_{k l}=y_{k} y_{l}\left(\boldsymbol{\Phi}\left(\mathbf{x}_{k}\right) \cdot \boldsymbol{\Phi}\left(\mathbf{x}_{l}\right)\right)$	
$\begin{gathered}\text { Subject to these } \\ \text { constraints: }\end{gathered} 0 \leq \alpha_{k} \leq$	We must do $\mathrm{R}^{2} / 2$ dot products to get this matrix ready. Each dot product now only requires m additions and multiplications
Then define: $\begin{aligned} & \mathbf{w}=\sum_{k \text { s.t. } \alpha_{k}>0} \alpha_{k} y_{k} \mathbf{\Phi}\left(\mathbf{x}_{k}\right) \\ & b=y_{K}\left(1-\varepsilon_{K}\right)-\mathbf{x}_{K} \cdot \mathbf{w}_{K} \\ & \text { where } K=\underset{k}{\arg \max _{k}} \alpha_{k} \end{aligned}$	Then classify with: $\boldsymbol{f}(\boldsymbol{x}, w, b)=\operatorname{sign}(w, \boldsymbol{\phi}(\boldsymbol{x})-b)$
Copyright © 2001, 2003, Andrew W. Moore	

Higher Order Polynomials						
Polynomial	$\phi(x)$	Cost to build $Q_{k l}$ matrix traditionally	Cost if 100 inputs	$\phi(a) . \phi(b)$	Cost to build $Q_{k l}$ matrix efficiently	$\begin{aligned} & \hline \text { Cost if } \\ & 100 \\ & \text { inputs } \end{aligned}$
Quadratic	All $m^{2} / 2$ terms up to degree 2	$m^{2} R^{2} / 4$	2,500 R^{2}	(a.b+1) ${ }^{2}$	$m R^{2} / 2$	$50 R^{2}$
Cubic	All $m^{3} / 6$ terms up to degree 3	$m^{3} R^{2} / 12$	83,000 R2	(a.b+1) ${ }^{3}$	$m R^{2} / 2$	$50 R^{2}$
Quartic	All $m^{4} / 24$ terms up to degree 4	$m^{4} R^{2} / 48$	1,960,000 R2	$(\mathrm{a} . \mathrm{b}+1)^{4}$	$m R^{2} / 2$	$50 R^{2}$
Copyright © 2001, 2003, Andrew W. Moore						

QP with Quintic basis functions	
We must do $\mathrm{R}^{2} / 2$ dot products to get this matrix ready.	$\rangle Q_{k l}=y_{k} y_{l}\left(\boldsymbol{\Phi}\left(\mathbf{x}_{k}\right) \cdot \boldsymbol{\Phi}\left(\mathbf{x}_{l}\right)\right)$
In 100-d, each dot product now needs 103	
But there are still worrying things lurking away What are they? contstramics.	$\forall k \quad \sum_{k=1}^{R} \alpha_{k} y_{k}=0$
Then define: $\begin{aligned} & \mathbf{w}=\sum_{k \text { s.t. } \alpha_{k}>0} \alpha_{k} y_{k} \mathbf{\Phi}\left(\mathbf{x}_{k}\right) \\ & b=y_{K}\left(1-\varepsilon_{K}\right)-\mathbf{x}_{K} \cdot \mathbf{w}_{K} \\ & \text { where } K=\arg \max _{k} \alpha_{k} \end{aligned}$	Then classify with: $\boldsymbol{f}(\boldsymbol{x}, w, b)=\operatorname{sign}(w, \boldsymbol{\phi}(\boldsymbol{x})-b)$
Copyright © 2001, 2003, Andrew W. Moore	

QP with Quintic basis functions	
We must do $R^{2} / 2$ dot products to get this matrix ready.$\rangle Q_{L}=v_{L} v_{1}\left(\Phi\left(\mathbf{x}_{\nu}\right) \Phi\left(\mathbf{x}_{\nu}\right)\right.$	
In 100-d, each dot product now needs 103 operations instead of 75 million But there are still worrying things lurking away What are they?	The use of Maximum Margin magically makes this not a problem
\qquad -The fear of overfitting with this enormous number of terms	
Then define:	
$b=y_{K}\left(1-\varepsilon_{K}\right)-\mathbf{x}_{K} \cdot \mathbf{w}_{K}$	Because each w. $\boldsymbol{\phi}(\mathbf{x})$ (see below) needs 75 million operations. What can be done?
where $K=\arg \max _{k} \alpha_{k}$	Then classify with: $\boldsymbol{f}(\boldsymbol{x}, w, b)=\operatorname{sign}(w . \boldsymbol{\phi}(\boldsymbol{x})-b)$
Copyright © 2001, 2003, Andrew W. Moore	

QP with Quintic basis functions

QP with Quintic basis functions	
We must do $\mathrm{R}^{2} / 2$ dot products to get this matrix ready.$\rangle Q_{\nu_{1}}=v_{\nu} v_{1}\left(\boldsymbol{\Phi}\left(\mathbf{x}_{\nu}\right) \cdot \boldsymbol{\Phi}\left(\mathbf{x}_{\nu}\right)\right)$	
In 100-d, each dot product now needs 103 operations instead of 75 million	The use of Maximum Margin magically makes this not a problem
But there are still worrying things lurking away. What are they?	$\forall k \quad \alpha_{k} y_{k}=0$
-The fear of overfitting with this enormous number of terms	
Then define: $\mathbf{w}=\quad \sum \alpha_{k} y_{k} \mathbf{\Phi}\left(\mathbf{x}_{k}\right.$ The evaluation phase (doing a set of predictions on a test set) will be very expensive (why?)	
$\begin{aligned} \mathbf{w} \cdot \boldsymbol{\Phi}(\mathbf{x}) & =\sum_{k \text { s.t. } \alpha_{k}>0} \alpha_{k} y_{k} \boldsymbol{\Phi}\left(\mathbf{x}_{k}\right) \cdot \boldsymbol{\Phi}(\mathbf{x}) \\ & =\sum_{k \text { s.t. } \alpha_{k}>0} \alpha_{k} y_{k}\left(\mathbf{x}_{k} \cdot \mathbf{x}+1\right)^{5} \end{aligned}$ en be done? Then classify with: $\boldsymbol{f}(\boldsymbol{x}, w, b)=\operatorname{sign}(w, \boldsymbol{\phi}(\boldsymbol{x})-b)$	
Copyright © 2001, 2003, Andrew W. Moore	

SVM Kernel Functions

- $K(\boldsymbol{a}, \boldsymbol{b})=(\boldsymbol{a} \cdot \boldsymbol{b}+1)^{d}$ is an example of an SVM Kernel Function
- Beyond polynomials there are other very high dimensional basis functions that can be made practical by finding the right Kernel Function
- Radial-Basis-style Kernel Function:

$$
K(\mathbf{a}, \mathbf{b})=\exp \left(-\frac{(\mathbf{a}-\mathbf{b})^{2}}{2 \sigma^{2}}\right)
$$

- Neural-net-style Kernel Function:

$$
K(\mathbf{a}, \mathbf{b})=\tanh (\kappa \mathbf{a} \cdot \mathbf{b}-\delta)
$$

Copyright © 2001, 2003, Andrew W. Moore

Primal Equations

$$
\overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{x}}_{\mathrm{pos}}+\mathrm{b}=1
$$

For all negative examples

$$
\overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{x}}_{\text {neg }}+\mathrm{b}=-1
$$

Distance between blue and red planes (the margin)

$$
\text { margin }=\frac{2}{\|\mathrm{~W}\|} \quad \text { Euclidean length ("2 norm") of }
$$

QP with Quintic basis functions	
Maximize $\sum_{k=1}^{R} \alpha_{k}-\frac{1}{2} \sum_{k=1}^{R} \sum_{l=1}^{R} \alpha_{k} \alpha_{l} Q_{k l}$ wh	Why SVMs don't overfit as much as you'd think: No matter what the basis function, there are really only up to R parameters: $\alpha_{1,} \alpha_{2} . . \alpha_{R}$, and usually most are set to zero by the Maximum Margin. Asking for small w.w is like "weight decay" in Neural Nets and like Ridge Regression parameters in Linear regression and like the use of Priors in Bayesian Regression---all designed to smooth the function and reduce overfitting.
Subject to these $\quad 0 \leq \alpha_{k} \leq C$ constraints:	
Then define: $\mathbf{w}=\sum_{k \text { s.t. } \alpha_{k}>0} \alpha_{k} y_{k} \mathbf{\Phi}\left(\mathbf{x}_{k}\right)$	
$\begin{aligned} \mathbf{w} \cdot \boldsymbol{\Phi}(\mathbf{x}) & =\sum_{k \text { s.t. } \alpha_{k}>0} \alpha_{k} y_{k} \boldsymbol{\Phi}\left(\mathbf{x}_{k}\right) \cdot \boldsymbol{\Phi}(\mathbf{x}) \\ & =\sum_{k \text { s.t. } \alpha_{k}>0} \alpha_{k} y_{k}\left(\mathbf{x}_{k} \cdot \mathbf{x}+1\right)^{5} \end{aligned}$ Only Sm operations ($S=$ \#support vectors)	overfitting. Then classify with: $\boldsymbol{f}(\boldsymbol{x}, w, b)=\operatorname{sign}(w, \boldsymbol{\phi}(\boldsymbol{x})-b)$
Copyright © 2001, 2003, Andrew W. Moore	

Review

The Primal QP

Note : $\overrightarrow{\mathrm{w}}, \mathrm{b}$ are our adjustable parameters

We can now use existing optimization packages to find a solution to the above (a global optimal soln)

The Math Program with Slack Variables

$$
\begin{aligned}
& \min _{\overrightarrow{\mathrm{w}, 5, \gamma}}\|\overrightarrow{\mathrm{w}}\|^{2}+\mathrm{C}\|\overrightarrow{\mathrm{\varepsilon}}\|_{1} \\
& \overrightarrow{\mathrm{w}}-\text { one for each input feature } \\
& \vec{\varepsilon}-\text { one for each example } \\
& \mathrm{C}-\text { scaling constant } \\
& \|\vec{\varepsilon}\|_{1}-\text { "one norm" - sum of components (all positive) } \\
& \text { such that } \\
& \overrightarrow{\mathrm{w}} \cdot \vec{x}_{\text {pos }}+\mathrm{b} \geq 1-\varepsilon_{i} \quad \text { This is the "traditional" } \\
& \overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{x}}_{\text {neg }}+\mathrm{b}_{\mathrm{j}} \leq-1+\varepsilon_{j} \quad \text { Support Vector Machine } \\
& \forall_{\mathrm{k}} \varepsilon_{k} \geq 0
\end{aligned}
$$

Why the word "Support"?

- All those examples on or on the wrong side of the two separating planes are the support vectors
- We'd get the same answer if we deleted all the non-support vectors!
- i.e., the "support vectors [examples]" support the solution

But what does a support vector mean?

- Support vectors are either:
- Misclassifications
- Data points that are just barely within the class (Correct points that could most easily be misclassified)
- In high dimensions, support vectors determine the capacity of the classifier
- Large margins typically involve fewer support vectors
- Intuition (and intuition on/y):
- Wide margin = lots of room to maneuver
- Lots of room to maneuver = fewer bends
- Fewer bends = fewer support vectors

How do we characterize "power"?

- Different machines have different amounts of "power".
- Tradeoff between:
- More power: Can model more complex classifiers but might overfit.
- Less power: Not going to overfit, but restricted in what it can model.
- How do we characterize the amount of power?

Some definitions

- Given some machine \mathbf{f}
- And under the assumption that all training points $\left(x_{k} y_{k}\right)$ were drawn i.i.d from some distribution.
- And under the assumption that future test points will be drawn from the same distribution
- Define

Vapnik-Chervonenkis dimension

 $\operatorname{TESTERR}(\alpha)=E\left[\frac{1}{2}|y-f(x, \alpha)|\right] \quad \operatorname{TRAINERR}(\alpha)=\frac{1}{R} \sum_{k=1}^{R} \frac{1}{2}\left|y_{k}-f\left(x_{k}, \alpha\right)\right|$- Given some machine \mathbf{f}, let h be its VC dimension.
- h is a measure of $\mathbf{f}^{\prime} s$ power (h does not depend on the choice of training set)
- Vapnik showed that with probability $1-\eta$
$\operatorname{TESTERR}(\alpha) \leq \operatorname{TRAINERR}(\alpha)+\sqrt{\frac{h(\log (2 R / h)+1)-\log (\eta / 4)}{R}}$
This gives us a way to estimate the error on
future data based only on the training error future data based only on the training error and the VC-dimension of \boldsymbol{f}

A learning machine

- A learning machine \boldsymbol{f} takes an input \boldsymbol{x} and transforms it, somehow using weights α, into a predicted output $\gamma^{e s t}=+/-1$

Some definitions

- Given some machine \mathbf{f}
- And under the assumption that all training points $\left(x_{k} y_{k}\right)$ were drawn i.i.d from some distribution.
- And under the assumption that future test points will be drawn from the same distribution
- Define

Structural Risk Minimization

- Let $\phi(f)=$ the set of functions representable by f .
- Suppose $\varphi\left(f_{1}\right) \subseteq \varphi\left(f_{2}\right) \subseteq \cdots \varphi\left(f_{n}\right)$
- Then $h\left(f_{1}\right) \leq h\left(f_{2}\right) \leq \cdots h\left(f_{n}\right)$
- We're trying to decide which machine to use.
- We train each machine and make a table...
$\operatorname{TESTERR}(\alpha) \leq \operatorname{TRAINERR}(\alpha)+\sqrt{\frac{h(\log (2 R / h)+1)-\log (\eta / 4)}{R}}$

i	f_{i}	TRAINERR	VC-Conf	Probable upper bound on TESTERR	Choice
1	f_{1}				
2	f_{2}				
3	f_{3}				$区$
4	f_{4}				
5	f_{5}				
6	f_{6}				

SVMs and PAC Learning

- Theorems connect PAC theory to the size of the margin
- Basically, the larger the margin, the better the expected accuracy
- See, for example, Chapter 4 of Support Vector Machines by Christianini and Shawe-Taylor, Cambridge University Press, 2002

PAC and the Number of Support Vectors

- The fewer the support vectors, the better the generalization will be
- Recall, non-support vectors are
- Correctly classified
- Don't change the learned model if left out of the training set
- So
leave-one-out error rate $\leq \frac{\text { \# support vectors }}{\# \text { trainingexamples }}$

Finding Non-Linear Separating Surfaces

- Map inputs into new space

Example: features $\mathrm{x}_{1} \mathrm{x}_{2}$
54

Example: features $\mathrm{x}_{1} \quad \mathrm{x}_{2} \quad \mathrm{x}_{1}{ }^{2} \quad \mathrm{x}_{2}{ }^{2} \quad \mathrm{x}_{1}{ }^{*} \mathrm{x}_{2}$

5	4	25	16	20

- Solve SVM program in this new space
- Computationally complex if many features
- But a clever trick exists

VC-dimension of an SVM

- Very very very loosely speaking there is some theory which under some different assumptions puts an upper bound on the VC dimension as

$$
\left\lceil\frac{\text { Diameter }}{\text { Margin }}\right\rceil
$$

- where
- Diameter is the diameter of the smallest sphere that can enclose all the high-dimensional term-vectors derived from the training set.
- Margin is the smallest margin we'll let the SVM use
- This can be used in SRM (Structural Risk Minimization) for choosing the polynomial degree, RBF σ, etc.
- But most people just use Cross-Validation

Copyright © 2001, 2003, Andrew W. Moore

Understanding LOO

- LOO estimates probability that a classifier trained on $\mathrm{n}-1$ points gets the nth point right
- For largish n, LOO is (sort of) an average of n such draws
- For SVM with k support vectors, n training points
- At least n-k draws will produce the same classifier
- At least this many will get the next point right
- Suggests empirical error of our SVM should be at least as low as k/n

The Kernel Trick

- Optimization problems often/always have a
"primal" and a "dual" representation
- We just saw the primal formulation
- The dual formulation is better for the case of a non-linear separating surface

Generalizing the Dot Product

We can generalize
Dot_Product $\left(\overrightarrow{\mathrm{x}}_{\mathrm{i}}, \overrightarrow{\mathrm{x}}_{\mathrm{j}}\right) \equiv \overrightarrow{\mathrm{x}}_{\mathrm{i}} \cdot \overrightarrow{\mathrm{x}}_{\mathrm{j}}$
to other "kernel functions"
e.g., $K\left(\vec{x}_{i}, \vec{x}_{j}\right) \equiv\left(\vec{x}_{i} \cdot \vec{x}_{j}\right)^{\delta}$

An acceptable kernel (usually non - linear) maps the original features into a new space implicitly

- in this new space we' re computing a dot product
- we don't need to explicitly know the features in the new space
- usually more efficient than directly converting to new space

Visualizing the Kernel

Separating plane (non-linear here but linear in derived space)

Input Space
$g()$ is feature transformation function
process is similar to what hidden units do in ANNs but kernel is user chosen

Extensions

- Class probabilities
- Use distance from boundary
- Fit a logistic sigmoid to output of SVM (icky)
- Logistic regression variants of SVM exist, but (as with ordinary logistic regression) don't have direct solutions
- Support vector regression
- Similar to SVM

- Instead of $>1,<-1$, add constraints for true target values

Relevance Vector Machine

- Bayesian Version of SVM
- Provides probabilities on outputs
- Tends to produce sparser solutions
- Requires non-linear optimization
- Can be slow

Doing multi-class classification

- SVMs can only handle two-class outputs (i.e. a categorical output variable with arity 2).
- What can be done?
- Answer: with output arity N, learn N SVM's
- SVM 1 learns "Output==1" vs "Output != 1"
- SVM 2 learns "Output==2" vs "Output != 2"
- :
- SVM N learns "Output==N" vs "Output != N"
- Then to predict the output for a new input, just predict with each SVM and find out which one puts the prediction the furthest into the positive region.

Copyright © 2001, 2003, Andrew W. Moore

Key SVM Ideas

- Maximize the margin between positive and negative examples (connects to PAC theory)
- Penalize errors in non-separable case
- Only the support vectors contribute to the solution
- Kernels map examples into a new, usually nonlinear space
- We implicitly do dot products in this new space (in the "dual" form of the SVM program)
- Kernels are a separate idea from SVMs (remember we introduced them for GP), but they combine very nicely with SVMs

SVM Implementations

- Sequential Minimal Optimization, SMO, efficient implementation of SVMs, Platt
- in Weka
- SVM ${ }^{\text {light }}$
- http://svmlight.joachims.org/
- Good implementations will tend to have quadratic run time in the number of data points (may be less of number of support vectors is small)

SVM Performance

- Anecdotally they work very very well indeed.
- Example: They are currently the best-known classifier on a well-studied hand-written-character recognition benchmark
- Another Example: AWM knows several reliable people doing practical real-world work who claim that SVMs have saved them when their other favorite classifiers did poorly. (REP too)
- There was a lot of excitement and religious fervor about SVMs and Kernel machines in 2004. In 2007, SVMs have cooled off, but they're still pretty neat and useful!
- Despite this, some practitioners are a little skeptical.

Copyright © 2001, 2003, Andrew W. Moore

References

- Tutorial on VC-dimension and Support Vector Machines:
C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):955-974, 1998. http://citeseer.nj.nec.com/burges98tutorial.html
- The VC/SRM/SVM Bible:

Statistical Learning Theory by Vladimir Vapnik, WileyInterscience; 1998

Copyright © 2001, 2003, Andrew W. Moore

LTUs/Perceptrons Re-Visited

In perceptrons, if classification +1 and -1 ,

$$
\vec{w}_{k+1}=\vec{w}_{k}+\eta y_{i} \vec{x}_{i}
$$

if the example x_{i} is currently misclassified
So

$$
\vec{w}_{\text {final }}=\sum_{i=1}^{\text {\#examples }} a_{i} y_{i} \vec{x}_{i}
$$

where a_{i} is some number of times we get
\vec{x}_{i} wrong and change weights
This assumes $\vec{w}_{\text {initial }}=\overrightarrow{0} \quad$ (all zero)

Dual Form of the Perceptron Learning Rule

```
output of perceptron \(\equiv \mathrm{h}(\overrightarrow{\mathrm{x}})=\operatorname{sgn}(\overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{x}})\)
    \(\operatorname{sgn}(z)=\left\{\begin{array}{cc}+1 & \text { if } z \geq 0 \\ -1 & \text { otherwise }\end{array}\right.\)
So \(h(\vec{x})=\operatorname{sgn}\left(\left[{ }_{\sum_{i=1}^{\# \text { examples }} a_{i} y_{i} \vec{x}_{i}}\right] \cdot \vec{x}\right)\)
    \(=\operatorname{sgn}\left(\sum a_{i} y_{i}\left[\vec{x}_{i} \cdot \vec{x}\right]\right)\)
```

New (i.e., dual) perceptron algorithm:
For each example i

$$
\begin{aligned}
& \text { if } y_{i} *\left(\sum_{j=1}^{\# \text { examples }} \mathrm{a}_{\mathrm{j}} \mathrm{y}_{\mathrm{j}}\left[\overrightarrow{\mathrm{x}}_{\mathrm{j}} \cdot \overrightarrow{\mathrm{x}}_{\mathrm{i}}\right]\right) \leq 0 \quad \text { (i.e., } \text { predicted }_{\mathrm{i}} \neq \text { actual }_{\mathrm{i}} \text {) } \\
& \text { then } \mathrm{a}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}}+1 \quad \text { (counts errors) }
\end{aligned}
$$

Primal versus Dual Space

- Primal - "weight space"
- Weight features to make output decision

$$
h\left(\vec{x}_{\text {new }}\right)=\operatorname{sgn}\left(\vec{w} \cdot \vec{x}_{\text {new }}\right)
$$

- Dual - "training-examples space"
- Weight distance (which is based on the features) to training examples

$$
h\left(\vec{x}_{\text {new }}\right)=\operatorname{sgn}\left(\sum_{j=1}^{\text {\#examples }} \mathrm{a}_{\mathrm{j}} y_{j}\left[\overrightarrow{\mathrm{x}}_{\mathrm{j}} \cdot \overrightarrow{\mathrm{x}}_{\text {new }}\right)\right.
$$

Why not use dual perceptrons?

- Perceptrons don't maximize the margin
- No regularization
- Less pressure to produce sparse classifiers
- More risk of overfitting

