Database Issues in Sensor Networks
Part II: In-Network Aggregation

Jun Yang
CPS 296.4, Fall 2007
SAMSI Course on Sensor Networks
Some slide contents come from J. Gao and A. Silberstein

A reminder on course projects
http://www.cs.duke.edu/courses/fall07/cps296.4/assignments.html
- Written project proposal
 - 1 page detailing group composition and topic
 - Due Oct. 16 (today!)
- Brief progress presentation
 - Approx. 5-10 min. for feedback
 - In Oct. 30 class
- Report
 - 10 page limit
 - Due Nov. 27 (last day of class)
- Conference-type presentation
 - 20-minutes + 5 min for questions in mini-conference
 - In Nov. 27 class

Review & roadmap
Database issues in sensor networks
- View sensor network as a distributed database
- Support declarative queries over the sensor network
- Part I: query processing using models
 - Model-driven pull
 - Model-based push for approximate data collection
- Part II: in-network data aggregation
 - Introduction: power of in-network processing
 - Robust aggregation
 - Continuous aggregation
An introduction to sensor aggregation

Computing aggregates

- SQL aggregates: MIN, MAX, SUM, COUNT, AVG
- More complex: COUNT(DISTINCT ...), median/quantiles, wavelets, samples, ...
- An aggregate function can be implemented with three functions:
 - Generate, $G(x)$: produce a partial state record from input
 - Fuse, $F(r_1, r_2)$: merge two records into one
 - Evaluate, $E(r)$: evaluate result from a partial state record
- E.g., for AVG:
 \[
 G(x) = (x, 1)
 \]
 \[
 F(hx, wy) = (x+y, w_x + w_y)
 \]
 \[
 E(hx, w_x) = x/w_x
 \]

Tree-based aggregation in TAG

- Each node generates
- Each internal node fuses records from its children with its own, and passes result record to parent
- Root node finally evaluates

*How does this beat collect-all-then-aggregate?
Making a tree more robust

- Tree is pretty fragile
 - If one link fails, data from entire subtree is lost
- Turn tree into a DAG?
 - Send 1/k of the summary to k parents, for free (broadcast)!
 - One link failure only drops 1/k data

Aggregation + routing spaghetti

- Variation of the DAG idea: send the whole summary up to k parents?
 - Works for some aggregates (which?)
 - But in general, one item can be counted many times!
- Aggregation scheme is too dependent on routing!
 - Routing tweaks affect correctness of aggregation
 - Can we decouple them?

Towards robust aggregation

Order and duplicate insensitivity (ODI)

Won’t it be nice if aggregation scheme is insensitive to the sequence or duplication of inputs?

- More precisely, a scheme is ODI-correct if, for any DAG, it produces a result identical to the correct answer produced by a canonical tree.

This is the property that made MIN/MAX easy.

Testing ODI-correctness

- Necessary and sufficient test turns out to be really simple:
 - $G(.)$ preserves duplicates; i.e., if x_1 and x_2 are considered duplicates, then $G(x_1) = G(x_2)$.
 - $F(., .)$ is commutative.
 - $F(., .)$ is associative.
 - $F(., .)$ is same-input idempotent; i.e., $F(r, r) = r$.

- Do MIN/MAX work?
- Does COUNT work out-of-box?

How to design ODI-correct schemes?

- Let’s do COUNT as an example.
 - A little randomness/approximation goes a long way.
 - Use synopses—compact, approximate summaries of data—for partial state records.
 - Borrow the “almighty” FM-sketch.
 - Then turn COUNT into MAX, which is ODI-correct.
FM-sketch

- Flajolet and Martin, 1985
- Counts # of distinct elements in a multi-set in one pass
 - Powerful building block for many data stream algorithms
- Start with a bitmap of 0’s: 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
- For each element x in the multi-set, hash it to a positive integer using function h(x)
- Turn the h(x)-th bit on
 - # of distinct elements \(\approx \frac{2^{\text{position of first 0}} - 1}{0.77351} \)
- Use multiple independent h’s to improve accuracy
 - With enough number of h’s, can get within a prescribed error with probability higher than a prescribed threshold

FM-sketch (cont’d)

- For FM-sketch to work, need
 - \(\Pr[h(x) = 1] = 1/2, \Pr[h(x) = 2] = 1/4, \Pr[h(x) = 3] = 1/8, \ldots \)
 - Easy to simulate with a random binary hash \(g(x,i) \)
- Intuition: the i-th bit will be 1 if there are many more than \(2^i \) distinct elements, each trying to set the bit with probability \(1/2^i \)

Back to COUNT...

- Suppose each node has a unique id
- Partial state record: FM sketch with > \(\log n \) bits
- \(G(id) \): generate FM-sketch with \{id\}
- \(F(s_1, s_2) \): bitwise-OR the two input sketches
 - OR is like \(\text{MAX} \)
- \(E(s) \): estimate using the position of first 0 in \(s \)

 - How about \(\text{SUM} \)?
 - Convert to COUNT: for node id with integer value \(v \), generate \(v \) items \(\langle id, 1 \rangle, \langle id, 2 \rangle, \ldots, \langle id, v \rangle \)
Rings

- Now we can use much more flexible routing structures to help improve communication reliability without double-counting.

Snooping tricks

- Implicit acknowledgement
 - Explicit ack too expensive for sensor networks
 - Node u sending to v snoops subsequent transmissions from v to see if v indeed forwards the message for u
 - How does it work with synopses?
 - Why doesn’t this trick work for TAG SUM?
- Suppression
 - If my neighbor’s transmission subsumes mine, no need to transmit mine
 - Used in TAG
 - How would this trick work in synopsis diffusion?

Another example: uniform sample

- Suppose each node has a unique id
- $G(id, v) = \langle (id, v, r) \rangle$; r is randomly chosen from $[0, 1]$
- Partial state record: a set of no more than K entries of the form (id, v, r)
- $F(s_1, s_2)$: up to K distinct entries in $s_1 \cup s_2$ with largest r
 - Again, top-K is a simple extension of MAX
- $E()$: output all (id, v) entries

- A random sample because r’s are randomly generated
Sensor aggregation problem: solved?

- How large are synopses?
- What are the costs of complex local processing?
- Is snooping completely free?
- MAX is not robust against outliers
 - What if somebody injects an all-1 FM-sketch?
- Everybody still transmits!
 - Can we do better?
- Are we taking advantage of spatio-temporal correlations?
 - Do suppression and redundancy really mix?

Towards continuous aggregation

Monitoring MAX

- Goal: for every epoch, return \(\langle \text{nodeid, value} \rangle \) for node with the highest value
 - A basic aggregation function useful in monitoring
 - How would TAG/synopsis diffusion do it?
 - What are the drawbacks?
- Suppression: don’t report if it doesn’t matter
 - Idea of this paper: leverage previous results as well
Adaptive range caching

- Root caches a range R_i around each sensor reading v_i
- Reporting: sensor i reports only if v_i falls out of R_i; a new range is installed
 - Invariant: root knows $v_i \in R_i$
- Querying: sometimes root can determine the max node unambiguously from R_i's
 - If not, query the nodes in question
- Adaptation: set ranges to balance
 reporting/querying costs
 - What trade-off can be controlled by adjusting range widths?
 - What do you think the ranges might look like eventually?

SLAT

Single-Level Adaptive Thresholds =
adaptive range caching with some tweaks

- Monitor the node with the current max v_{max}
- Ranges can be made one-sided = thresholds
 - Invariant: $v_i \leq t_i \leq v_{\text{max}}$
 - Report to root if value breaks threshold
 - If v_{max} falls, query all nodes with $t_i > v_{\text{max}}$ to find new v_{max} and set new thresholds

Example

- Root stores threshold

 Can we aggregate here?

 Unbroken threshold, no report

 Broken thresholds, all nodes report
Hierarchical adaptive thresholds

- Additional invariant: \(t_i \leq t_{i, \text{parent}} \)
- Subtree invariant: \(t_i \geq \text{all values in subtree} \)

- Each node remembers child thresholds
- Reporting: only if subtree invariant violated
- Querying: if max falls, only visit subtrees with threshold greater than the new candidate max
- Adjust thresholds in the process

Example
Suppression across space/time

- Thresholds at internal nodes carry over temporally
 - Example
 - Nodes a and b have common ancestors
 - Both rise, but b rises after a
 - b benefits from a’s earlier rise

= One node’s previous value help suppressing other nodes’ subsequent values
 - TAG only suppresses if a and b rise in the same epoch

Threshold setting: when?

- During reporting
 - Threshold may be forced to rise
 - When broken by any child
 - Or, by choice, threshold may rise higher than subtree max
 - If the node reported to its parent earlier in the epoch
 - Why would we do this?

- During querying
 - Threshold may be forced to fall
 - At or below new max
 - Or, by choice, threshold may be set lower than new max
 - If the node is contacted in querying
 - Why would we do this?

Threshold setting: where?

- Bisecting gap (guarding against an adversary)
- Using models that predict value trends
- Adaptively, similar to adaptive range caching
Discussion

- Too much reliance on the routing tree structure
- Suppressed reports vs. failures
- How can we apply the techniques in more general settings?
 - Other aggregates?
 - More complex queries: additional selections, group-bys, joins, etc.?
 - Multiple queries: what if MAX isn’t the only query running?
- What are the ideas that we can generalize?
 - Exploit query semantics
 - Exploit previous results
 - Exploit in-network processing and caching
 - Push vs. pull

Next time

- Alan Gelfand, Duke Statistics
- Stochastic modeling of data from spatio-temporal process
 - Slides already available on course Web site