Prof. Susan Rodger
Announcements

• Midterm exam next Thursday
 – Closed book, closed notes, closed neighbor
 – Chaps 1-2, Chaps 4, 6, html
 – Will give you an old exam to work on over the weekend, then review next Tuesday

• Assignment 4 storyboard due today
 – Alice world due Thursday
What we will do today

• Lecture on Chap 6, Sec 1 - Functions
• Classwork
Functionality

• A function
 – Receives value(s)
 – Performs computation on value(s)
 – Returns (sends back) a value
Types of functions

• The type of a function depends on the type of value it returns
 – a calculated value (a number)
 – a specific object
 – a color
 – etc.
Built-in functions

• Used one of Alice’s built-in functions
 – *skateAround* method for the *cleverSkater*

• Let’s look at another example.
Example

- Move ball to within 1 meter of net, then bounce ball over the net.
 - Bounce - Ball should move up and forward, then down and forward
Move Ball to 1 meter from Net

• Use “distance to” function and math
Height

• Can use the built-in height function to determine the height of the net and move the ball up that distance

Demo – what happens?
Rolling the ball

- How do we roll the ball along the ground?
- Want a realistic motion rather than a slide
- The ball must simultaneously move and roll.
- The ball must roll “as seen by” ground
- The ball and ground must face the same direction
Demo: A first attempt

toyBall1.test No parameters

No variables

- toyBall1 \(\text{turn to face} \) tennisNet \(\text{more...} \)
- ground \(\text{turn to face} \) tennisNet \(\text{more...} \)

- Do together
 - toyBall1 \(\text{move} \) forward \(2 \text{ meters} \) asSeenBy = ground \(\text{more...} \)
 - toyBall1 \(\text{turn} \) forward \(2 \text{ revolutions} \) \(\text{more...} \)
Revising the Approach

• The ball is made to roll 1 revolution.
• What if we want the ball to roll a certain distance?
• How can we make the ball roll the correct number of revolutions to cover a given distance along the ground?
Number of Revolutions

- The number of revolutions depends on the size of the ball
 - The number of revolutions is \(\text{distance} / (\pi \times \text{diameter}) \)

- There is no built-in function to return the number of revolutions
 - Must write it!
Parameters

• We want to return the value computed as
 Distance / Pi * diameter
 where Pi = 3.14…

• Obviously, what is needed
 – The ball’s diameter
 • The ball object has a built-in width function
 – The distance the ball is to travel
 • Can be sent as a parameter to the function
numberOfRevolutions function

```
numberOfRevolutions = function (
  distance,
  subject = toyball
)
```

Return:

```
(distance / (3.14 * subject = toyball's width))
```
Demo: Calling the function

This is a test value

- Run the animation with several test values
- Make sure it works as expected
- What happens if you use a negative value?
- Add a parameter for distance
Now Ball roll to net?

- Difficult....
- ToyBall turn to face TennisNet and roll, what happens?
Tricky – Orient To

<table>
<thead>
<tr>
<th>Action</th>
<th>Target</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>toyBall1 👈 orient to ground</td>
<td>ground</td>
<td>more...</td>
</tr>
<tr>
<td>toyBall1 👈 turn to face tennisNet</td>
<td>tennisNet</td>
<td>more...</td>
</tr>
<tr>
<td>ground 👈 turn to face tennisNet</td>
<td>tennisNet</td>
<td>more...</td>
</tr>
<tr>
<td>toyBall1.realisticRoll distance</td>
<td>{ toyBall1 👈 distance to tennisNet - 1 }</td>
<td></td>
</tr>
<tr>
<td>toyBall1 👈 orient to world</td>
<td>world</td>
<td>more...</td>
</tr>
<tr>
<td>toyBall1 👈 turn to face tennisNet</td>
<td>tennisNet</td>
<td>more...</td>
</tr>
</tbody>
</table>

Do together

- toyBall1 👈 move forward 2 meters more...

Do in order

- toyBall1 👈 move up { subject = tennisNet's height * 1.5 }
- toyBall1 👈 move down { subject = tennisNet's height * 1.5 }
Levels of functions

• As with methods, you can write functions as either class-level or world-level. (what was the function we just wrote?)

• Guidelines for class-level methods apply to class-level functions:
 – No references to other objects
 – No references to world-level functions
 – Built-in world-level functions are ok
Classwork today