Relational Database Design
Part II

CPS 116
Introduction to Database Systems

Announcements (Thu. Sep. 4)
- Homework #1 due in 1½ weeks
 - Start early!!!
- Details of the course project and a list of suggested ideas will be available next Tuesday
- … so how do we like the new room (HH 208)?

Database design steps: review
- Understand the real-world domain being modeled
- Specify it using a database design model (e.g., E/R)
- Translate specification to the data model of DBMS (e.g., relational)
- Create DBMS schema
- Next: translating E/R design to relational schema

E/R model: review
- Entity sets
 - Keys
 - Weak entity sets
- Relationship sets
 - Attributes on relationships
 - Multiplicity
 -Roles
 - Binary versus N-ary relationships
 - Modeling N-ary relationships with weak entity sets and binary relationships
 - ISA relationships

Translating entity sets
- An entity set translates directly to a table
 - Attributes → columns
 - Key attributes → key columns

Translating weak entity sets
- Remember the “borrowed” key attributes
- Watch out for attribute name conflicts

![Diagram of E/R model with sample entity sets and attributes]
Translating relationship sets

- A relationship set translates to a table
 - Keys of connected entity sets → columns
 - Attributes of the relationship set (if any) → columns
 - Multiplicity of the relationship set determines the key of the table

Translating double diamonds

- Recall that a double-diamond relationship set connects a weak entity set to another entity set
- No need to translate because the relationship is implicit in the weak entity set’s translation

Translating subclasses & ISA (approach 1)

- Entity-in-all-superclasses approach (“E/R style”)
 - An entity is represented in the table for each subclass to which it belongs
 - A table includes only the attributes directly attached to the corresponding entity set, plus the inherited key

Translating subclasses & ISA (approach 2)

- Entity-in-most-specific-class approach (“OO style”)
 - An entity is only represented in one table (corresponding to the most specific entity set to which the entity belongs)
 - A table includes the attributes attached to the corresponding entity set, plus all inherited attributes

Translating subclasses & ISA (approach 3)

- All-entities-in-one-table approach (“NULL style”)
 - One relation for the root entity set, with all attributes found anywhere in the network of subclasses
 - Use a special NULL value in columns that are not relevant for a particular entity
Comparison of three approaches

- **Entity-in-all-superclasses**
 - **Pro:** All students are found in one table
 - **Con:** Attributes of grad students are scattered in different tables

- **Entity-in-most-specific-class**
 - **Pro:** All attributes of grad students are found in one table
 - **Con:** Students are scattered in different tables

- **All-entities-in-one-table**
 - **Pro:** Everything is in one table
 - **Con:** Too many NULL's; complicated if class hierarchy is complex

Simplifications and refinements

- **Encode the type of train/station as a column rather than creating subclasses**
- **Some constraints are no longer captured**
 - Type must be either “local” or “express”
 - Express trains only stop at express stations
 - Fortunately, they can be expressed/declared explicitly as database constraints in SQL
 - Arguably a better design because it is simpler!

An alternative design

- **Encode the type of train/station as a column rather than creating subclasses**
- **Some constraints are no longer captured**
 - Type must be either “local” or “express”
 - Express trains only stop at express stations
 - Fortunately, they can be expressed/declared explicitly as database constraints in SQL
 - Arguably a better design because it is simpler!

Design principles

- **KISS**
 - Keep It Simple, Stupid
- **Avoid redundancy**
 - Redundancy wastes space, complicates updates and deletes, promotes inconsistency
- **Capture essential constraints, but don’t introduce unnecessary restrictions**
- **Use your common sense**
 - Warning: mechanical translation procedures given in this lecture are no substitute for your own judgment