CPS230 Prof. Jeff Vitter
Design and Analysis of Algorithms Fall 2001

Trial and Error Method for Recurrences

This handout discusses the trial and error method for determining the leading-order term
of S(n) when S(n) is defined by a recurrence relation where S(n) appears by itself on the
lefthand side of the recurrence. It is important to note that this method is not foolproof,
and when it works not even Justin Wilson can gahhhhrawteeeeee! that you have the right
answer. (Justin Wilson is unfortunately no longer with us.) But it is very easy to use,
and often gives you good results. To prove that you have the right answer, always resort
to induction. (But once you an idea of what the answer is, the induction proof is usually
straightforward.) Here’s the method:

(i) Derive a recurrence relation for S(n), in case it’s in some other form, like summation
form.
(ii) Guess the leading-order term.
(iii) Plug the leading-order term into both sides of the recurrence relation. The lefthand
side will now contain nothing but the leading order term.
(iv) Compare the two sides of the equation:

(a) If the lefthand side (LHS) leading-order term matches the righthand side (RHS)
leading-order term and the second-order term on the RHS cancels out, your guess
is correct.

(b) Else if the LHS leading-order term and the RHS leading-order term match, then
attempt to find values for the undetermined quantities, if any, that will allow you
to cancel the RHS second-order term. If you are successful, your guess is correct.

(c) Else if the LHS leading-order term is smaller than the RHS leading-order term,
then guess another leading-order term that grows more quickly than your previous
guess, and go to step (iii).

(d) Else if the LHS leading-order term is larger than the RHS leading-order term,
then guess another leading-order term that grows less quickly than your previous
guess, and go to step (iii).

(e) If all of the above fail, fudge or punt.

Example 1. S(n) = Z k>,
1<k<n
(i) S(n)=S(n —1)+n?
(i) Guess S(n) ~ an?, where a is an undetermined constant.
(iii)
an? = a(n —1)% +n?
Z (a+1)n? —2an+a

(iv) (c) The LHS leading-order term an? is smaller than the RHS leading-order term
(a + 1)n?, regardless of what a is. The reason is that the difference between the
guesses an? and a(n — 1)2 for S(n) and S(n — 1) is too small. Let’s make a faster-
growing guess. Let’s also try to be more general and not pin ourselves down. We'll
try the more general guess S(n) ~ an®, where a and c are undetermined constants.
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La (nc — (;) nc 4 (;) nt2 — (g) ne3 4.+ (—1)6(2) nc_c> +n?

1 1
< an® —acn® ! + ac(c — 1)5716_2 —ac(c—1)(c— 2)671‘3_3 + ... +a(-1)°+n>

(iv) The leading-order terms an® match. Let’s try (iv)(b). The only way that the RHS
second-order term can possibly cancel out is if —acn®~! = n?, because all other terms
(except for the leading-order term an®) are definitely of a lower order than —acn®=!.
So, let’s see if we can make n? cancel —acn®"!: —acn®! = n? implies ¢ = 3 which

further implies a = 1, giving us S(N) ~ 3n® by substitution for ¢ and a.

1

Note: the exact value of S(n) is zn® + n? + tn. If you can’t guess the exact

answer, you can prove that %n‘g is the leading term by induction. To do that, for example,

we could prove that n3 < S(n) < 3n®+ 2n? From this it would then follow that

lim,, 00 S(n)/(3n%) = 1, which means by definition that S(n) ~ 3n® (To prove that

the above limit is 1, use either the “squeeze theorem” from first-year calculus, or use
I’Hospital’s rule, which is given at the end of this handout.)

Here’s how to prove that %n?’ < S(n) < %n3 + %n2 by induction. First we’ll prove the
first inequality $n® < S(n):

Base case. +(1)% < S(1).

3
Induction step. Assume that the inequality is true for 1, 2, ..., n — 1, and let’s prove it
for n:
S(n)=n*+S(n-1)
1
>n®+-(n—-1P2=n’+_-n*-n?+n- 3
> Ly
3
Now we’ll prove S(n) < in3 + 2n?
Base case. S(1) < 3(1)®+ 2(1)?
Induction step.
S(n) =n®+S(n—1)
1 2 1 2 4 2
<n2—|—§(n—1)3—}—§(n 1)2:n2+—n3—n2+n—§—}—§n2— §n+§
1 4 n 2 , 1 i 1
3 3 3 3
1 2
< 34 22
S 3n + 3n

The way we chose the particular inequality 313 < S(n) < in3+ 2n? that we did was
by experiment. Before writing this handout, we fiddled with possible second-order terms
until we found some that made the above induction proof work. The terms %n?’ + 0n?
worked for the lefthand side of the inequality, and %nB + %n2 worked for the righthand
side. Some other choices would work, too. For example, if you were smart (or lucky)
enough to guess the closed-form solution to S(n), you could prove that by induction.
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Example 2. This example will be covered in a couple weeks.

Fin—1)+F(n—2) ifn>2;
Fn)=41 ifn=1;
0 if n=0.

(i) Given.
(ii) Guess F(n) ~ an®.
(iii)
an® = a(n—1)°+a(n —2)°
= an® —acnt + ...+ an® — 2acn® ! + ...
< 2an® + ...

(iv) (¢) The LHS leading-order term is too small. The function should grow more quickly
in order to make the LHS leading-order term grow faster relative to the RHS leading-
order term. Guess F'(n) ~ ab™.

(ifi) ab" = ab""! + ab™2 = ab™2(b + 1).

(iv) The LHS leading-order term and RHS leading-order term would match if b+ 1 = b?
so try (iv)(b): If b2 = b+ 1, then b2 —b—1 = 0. Therefore, by the quadratic equation,

_ 1= V(=1)2 —4(1)(-1) _ 1= V5

2(1) 2

b
It turns out that the exact value of F(n) is a linear combination of our two possibilities:

1+v5) 1-v5)
o (5575) + (57

We can solve for a; and az using the values F'(0) =0 and F(1) = 1:

0=F(0)=a <1+2\/5> + asg (1_2\/5

L= ()=, (1 +2\/5> . (1—2\/5> . (1 +2\/5> s (1—2\/5)
_ B 1
a] = %

1 ((1+v5) [1=v5)
ro= (7))

which can be proved rigorously by induction. In particular, we have

F(n)N%(lz\/g) , since%(l_;/g) — 0 as n — oo.

) = a1+ a2 e a1 = —asg.

and ay =

Sl

Therefore,




Example 3. This example will be discussed when we cover asymptotics near the end of

the semester.
P(n) = n! = {nP(n—l) ifn>1,

1 if n =0.
(i) Given.
(ii) Guess P(n )Nn
(iti) n° = n(n ~ 1)° = n(n®+ 0(n°)) = n°** + O(n°).
(iv) (c) The RHS is too big for the guess to work. The reason is that the difference

between the guesses n¢ and n°~! for P(n) and P(n — 1) is too small. Therefore, P(n)
should grow faster Guess P(n) ~ a™.

(iii) a™ = panl (n/a)
(iv) (c¢) Again, the RHS is too big for the guess to work. Therefore, P(n) should grow
faster. Guess P(n) ~ n™.

(iii) n"™ < n(n—1)""1 < n™(1—1/n)""1 ~ n"(1/e), by L'Hospital’s rule.
(iv) (d) Now, the RHS is too small. Hence, P(n) should grow slower. Guess P(n) ~

" b(n/a)"te.
b)) 2w (@) 20(2)" a1~ 1) ®

(iv) (b) L’Hospital’s Rule says that lim,_,.,(1 — 1/n)"T17¢ = 1/e. But we must make
sure that the second-order term in the expansion of the RHS is 0. Let’s expand:

(-5 me (- 2)")
— exp ((n+1—|—c)1n (1— %))
1

In order for the leading-order term of the RHS of (*) to equal the LHS of () and for
the second-order term of the RHS to be 0, we must have

n+l—c
(-2 2o ().
n n
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of n.

Substituting (xx), we get

1 1 1 1 1
ae 1+ (=—-¢c)=+0(—= =14+0|— — a=ce¢and c= —.
2 n n?2 n2 2

Note that b has not been determined. This suggests that P(n) ~ b(n/e)" 2 for some
unknown constant b, or in other words, P(n) = ©(n/e)"*2. That is the best this
method can do.

It turns out (by Stirling’s approximation) that the actual value of b is V2me, so

n n
n! ~V2mn (—) .
€

Note that in the material that follows, logn and lg n both denote the natural logarithm



