CPS216 Advanced Database Systems - Fall 2008
Assignment 2A

Due date: Thursday, Oct. 9, 2008, in class (2.50 PM). Late submissions will not be accepted.

Submission: In class, or email solution in pdf or plain text to shivnath@cs.duke.edu.

Do not forget to indicate your name on your submission.

State all assumptions. For questions where descriptive solutions are required, you will be
graded both on the correctness and clarity of your reasoning.

e Email questions to shivnath@cs.duke.edu.

Question 1 Points 10

Suppose we want to sort table R(A) using a machine with 1 Gigabyte of memory. Let MAX(b)
denote the maximum value of T(R) (i.e., number of tuples in R) that we can sort using the two-
phase sort algorithm when the disk block (and the memory block) size is b bytes. Which is larger:
MAX(4096) or MAX(8192)? Give brief explanation.

Question 2 Points 15

When we discussed the block nested-loop join algorithm in class, we defined its cost as the total
number of disk blocks accessed. For example, we saw that a block nested-loop join of tables R and
S, with R as the outer, has a cost = B(R) + B(R)B(S)/(M-1). We also designed the minimum
cost block nested-loop join algorithm for this cost model. In this simple cost model, we did not
distinguish between random accesses and sequential accesses. In this question, we will extend our
cost model to account for random accesses and sequential accesses.

The following information is available:

e Table R is clustered and the blocks of R are laid out contiguously on disk. B(R) = 1000 and
T(R) = 10,000. (Note: we follow the notation used in class.)

e Table S is clustered and the blocks of S are laid out contiguously on disk. B(S) = 500 and
T(S) = 5000.

e M = 101 blocks.

e For simplicity, we will assume that a random access can be done on average in time ¢, = 20
ms, and a sequential access can be done on average in time ¢t = 1 ms. For example, scanning
five contiguous blocks on disk, assuming the first access is random, incurs a cost ¢, + 4¢,.

1. [7 Points] Design an algorithm for the block nested-loop join of tables R and S which has
minimum cost when we distinguish between random and sequential disk accesses. Compute
this minimum cost using the parameter values specified above.

2. [8 Points] How does your answer to (1) change if blocks of R are not laid out contiguously
on disk? All other assumptions and parameters remain the same as specified above. Compute
the minimum cost possible for block nested-loop join in this case.

Question 3 Points 10

Consider the following SQL query Q over tables R(B,C) and S(A,B).

Q: SELECT *
FROM S
WHERE S.A > (SELECT SUM(R.C)

FROM R
WHERE R.B = S.B)

The following information is available.

e R is clustered and the blocks of R are laid out contiguously on disk. B(R) = 1000 and T(R)
= 10,000.

e S is clustered and the blocks of S are laid out contiguously on disk. B(S) = 500 and T(S) =
5000.

e M = 101 blocks

We can process Q using a simple extension to the block nested-loop join algorithm we studied in
class. The algorithm would work as follows:

LOOP:

/** S is the outer table and R is the inner table */

1. Read the next M-1 blocks of S into memory;

2. We store an extra field ”sum” with each tuple of S in memory. (We assume that
there is extra space in memory to store a constant amount of data per tuple.)
This field, denoted s.sum for tuple s in S, keeps track of the

sum of R.C values for R tuples that have R.B = s.B.
s.sum is initialized to 0;

Read blocks of R one by one using the remaining one block of memory;

For every tuple s of S in the current M-1 blocks of S in memory
For every tuple r of R in the current block of R in memory

If (r.B = s.B) Then s.sum = s.sum + 1.C;

After we finish one full scan through R
For every tuple s of S in the current M-1 blocks of S in memory

9. If (s.A > s.sum) Then output s;

CONTINUE with LOOP till we finish one full scan through S;

PO NSOk W

In the above algorithm, we stored an extra field per tuple of S in memory. You can assume that a
constant amount of extra space is available per tuple in memory. The cost model that we will use in
this question is the same as the one we have been using in class, namely, the total number of blocks
read or written, excluding the writes for the final output.

Suppose you have a non-clustering B-tree index on R.B. For this question, assume that both
R.B and S.B values are distributed uniformly in [1,...,1000]. (That is, there are T(R)/V(R.B) =
10,000/1000 = 10 R tuples for each value of R.B in [1,...,1000]; and there are T(S)/V(S,B) =
5000/1000 = 5 S tuples for each value of S.B in [1,...,1000].) Also assume that the index fits
completely in memory. For these parameters, what is the most efficient way to process Q using the
non-clustering index on R.B? Compute the cost of this algorithm.

Question 4 Points 35

In this question, we will study a variant of a B-Tree that we will call B~-Tree!. In a regular
B-Tree, all the keys indexed by the B-Tree occur only in the leaf nodes; the keys in the internal
nodes are used only as roadmaps to locate the indexed keys in the leaf nodes. In a B~-Tree, the
keys indexed by the tree occur in all types of nodes: leaf, internal, and root. In fact, any key that
occurs in any node of a B™-Tree is one of the keys indexed by the tree. Figure 1 shows a B-Tree
and a B™-Tree for the same set of indexed keys.

‘2135 “425765“849297‘ ‘2135“5765“9297
| | I | | I | || | ||

i 41 3 1 3 1

(a) A regular B-Tree (b) A B™-Tree
Figure 1: A B-Tree and a B™-Tree indexing the same set of keys: 21,35,42,57,65,84,92,97

We have intentionally not specified most of the details of the B~-Tree in Figure 1. You are
required to work out the details to make the B~-Tree function as an efficient disk-based index, and
answer the following questions that ask for details of your B~-Tree structure.

1. (3 Points) Describe the general structure of an internal node in your B~-Tree? The general
structure describes the keys and pointers in a node and their semantics (meaning).

2. (3 Points) Describe the general structure of a leaf node in the B~-Tree? Specifically, would
your leaf node contain a next pointer like the leaf nodes in a regular B-Tree? Briefly explain
why or why not?

3. (4 Points) Suppose each node of the B~-Tree has to be stored in exactly one disk block. Let
n; denote the maximum number of keys that you store in a leaf node, and n; the maximum
number of keys that you store in an internal node. Would you chose n; = n; like in a regular
B-Tree? Briefly elaborate.

For the remaining parts of this question, assume that your B~ -Tree is used to index 100 million
distinct keys and data record pointers. The size of a key is 8 bytes and the size of a pointer (record
or block) is 8 bytes. Each disk block is 4096 bytes, and each node of the B~-Tree has to be stored
in one disk block. Assume that you constructed your B~-Tree to ensure maximum space utilization
(i.e., almost all the nodes in the B~-Tree are full).

4. (4 Points) How many disk blocks does the B~-Tree require?
5. (4 Points) What is the number of levels in the B~-Tree?

6. (4 Points) What is the expected number of nodes visited during an equality search when ()
the equality search involves a key that is indexed, and (II) the equality search involves a key
that is not in the index. For (I) assume that each of the 100 million keys are equally likely to
be searched.

7. (4 Points) Give a rough estimate of the number of nodes visited during a range search that
returns 100, 000 keys.

IHistorically, the B~ -trees discussed in this problem are called B-Trees, and the B-Trees that we covered in the
class are called BT-trees.

8. (9 Points) Which index structure is better—the B~-Tree that you designed, or the regular
B-Tree—with respect to each of the following criteria?
a. Space efficiency.
b. Search efficiency.

c. Complexity of designing update operations.

Question 5 Points 15

Consider a B-Tree with parameter n. For each node there is a limit on the minimum number of
pointers that the node can have. For internal nodes, the limit given in class is WTHL for leaf nodes
the limit is L”THJ (pointers to data), and for the root node the limit is 2 (assuming the B-Tree has
at least 2 indexed keys).

Indicate whether each of the statements (a)-(c) are true or false. Provide brief explanation.

(a) The limits for internal and leaf nodes can be reduced below [25] and |2 |, respectively.
(b) The limits for internal and leaf nodes can be increased beyond [25] and [24 |, respectively.

(c) For root node, the limit can be increased beyond 2.

Question 6 Points 15

Consider insertion and deletion operations over a B-Tree. Clearly, an insertion or a deletion
operation changes the state of a B-Tree. By “state” we mean the exact set of nodes comprising the
B-Tree, and the keys and pointers stored in these nodes. Assume there are no duplicate keys.

Indicate whether each of the statements (a)-(c) are true or false. Provide brief explanation.

(a) Inserting a key k and immediately deleting it can leave the B-Tree in a different state.

(b) Inserting key k1 followed by key ko always leaves the B-Tree in the same state as inserting ko
followed by k.

(c) Consider the insertion of key k; followed immediately by the deletion of key ko (k1 # k2). The
height of the B-Tree can increase during the insertion of k1 and decrease during the deletion
of kg.

