Introduction

Instructor: Vincent Conitzer
Basic information about course

• TuTh 11:40-12:55, LSRC D243

• Text: Artificial Intelligence: A Modern Approach

• Instructor: Vincent Conitzer
 – OH Th. 1pm-2pm, LSRC D207 or by appointment
 – Ph.D. CMU 2006; third year at Duke
 – Research on computational aspects of (micro)economics, game theory, systems with multiple intelligent agents

• TA: Lirong Xia
 – OH Tu. 3pm-4pm, LSRC D343 or by appointment
 – 2nd-year Ph.D. student at Duke
 – Research on computational aspects of voting/social choice
Prerequisites

- Comfortable **programming** in language such as C (or C++) or Java
- Some knowledge of **algorithmic concepts** such as running times of algorithms; having some rough idea of what NP-hard means
- Some familiarity with **probability** (we will go over this from the beginning but we will cover the basics only briefly)
- Not scared of **mathematics**, some background in discrete mathematics, able to do simple mathematical proofs
- If you do not have a **standard undergraduate computer science background**, talk to me first.
- Well-prepared **undergraduates** are certainly welcome
- You do **not** need to have taken an **undergraduate AI course** (though of course it will help if you have)
Grading

• Assignments: 35%
 – May discuss with another person; writeup and code must be your own

• Midterm exams: 30%

• Final exam: 30%

• Participation: 5%
What is artificial intelligence?

• Popular conception driven by science fiction
 – Robots good at everything except emotions, empathy, appreciation of art, culture, …
 • … until later in the movie.
 – Perhaps more representative of human autism than of (current) real robotics/AI
 • “It is my belief that the existence of autism has contributed to [the theme of the intelligent but soulless automaton] in no small way.” [Uta Frith, “Autism”]
 • Current AI is also bad at lots of simpler stuff!
 • There is a lot of AI work on thinking about what other agents are thinking
Real AI

• A serious science.

• **General-purpose AI** like the robots of science fiction is incredibly hard
 – Human brain appears to have lots of special and general functions, integrated in some amazing way that we really do not understand at all (yet)

• **Special-purpose AI** is more doable (nontrivial)
 – E.g., chess/poker playing programs, logistics planning, automated translation, voice recognition, web search, data mining, medical diagnosis, keeping a car on the road, … … … …
Definitions of AI

focus on action avoids philosophical issues such as “is the system conscious” etc.

<table>
<thead>
<tr>
<th>Systems that think like humans</th>
<th>Systems that think rationally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems that act like humans</td>
<td>Systems that act rationally</td>
</tr>
</tbody>
</table>

- We will follow “act rationally” approach
 - Distinction may not be that important
 - acting rationally/like a human presumably requires (some sort of) thinking rationally/like a human,
 - humans much more rational anyway in complex domains
“Chinese room” argument [Searle 1980]

- **Person** who knows English but not Chinese sits in room
- Receives notes in Chinese
- Has systematic English **rule book** for how to write new Chinese characters based on input Chinese characters, returns his notes
 - Person=CPU, rule book=AI program, really also need lots of paper (storage)
 - Has no understanding of what they mean
 - But from the outside, the room gives perfectly reasonable answers in Chinese!
- Searle’s argument: the room has no intelligence in it!
Turing Test

• (Human) judge communicates with a human and a machine over text-only channel,
• Both human and machine try to act like a human,
• Judge tries to tell which is which.
• Numerous variants
• Loebner prize
• Current programs nowhere close to passing this
 – http://www.jabberwacky.com/
 – http://turingtrade.org/
Turing Test on unsuspecting judges

• It is possible to (temporarily) fool humans who do not realize they may be talking to a bot
• ELIZA program [Weizenbaum 66] rephrases partner’s statements and questions (~psychotherapist)
five: just asking if richard can tell me about some good lobster diving spots thats it if this is a problem then forget iot i dont know whats going on on here

AOLiza: that is interesting. please continue.

five: continue what just ask richard when he gets home about some lobster diving up hat way thats all if you got a problem with it then forget it,this isnt worht it i dont know whats been going on or what bev has told you but i havent done anything to anybody iam the one that got used and dumped

AOLiza: tell me more about that.

five: about what

AOLiza: what do you think?

five: therers nothing to tell she us3ed me then got tired of me said i wasnt her type anymore i was possesive and controlling

AOLiza: perhaps i already know you were possesive and controlling.

five: i was huh you nuts i gave her all the room she wanted never told nhewre what to do or where to go
Is Turing Test the right goal?

• “Aeronautical engineering texts do not define the goal of their field as making ‘machines that fly so exactly like pigeons that they can fool even other pigeons.’” [Russell and Norvig]
Lessons from AI research

• Clearly-defined tasks that we think require intelligence and education from humans tend to be doable for AI techniques
 – Playing chess, drawing logical inferences from clearly-stated facts, performing probability calculations in well-defined environments, …
 – Although, scalability can be a significant issue

• Complex, messy, ambiguous tasks that come natural to humans (in some cases other animals) are much harder
 – Recognizing your grandmother in a crowd, drawing the right conclusion from an ungrammatical or ambiguous sentence, driving around the city, …

• Humans better at coming up with reasonably good solutions in complex environments

• Humans better at adapting/self-evaluation/creativity (“My usual strategy for chess is getting me into trouble against this person… Why? What else can I do?”)
Early history of AI

- 50s/60s: Early successes! AI can draw logical conclusions, prove some theorems, create simple plans… Some initial work on neural networks…

- Led to **overhyping**: researchers promised funding agencies spectacular progress, but started running into difficulties:
 - **Ambiguity**: highly funded translation programs (Russian to English) were good at syntactic manipulation but bad at disambiguation
 - “The spirit is willing but the flesh is weak” becomes “The vodka is good but the meat is rotten”
 - **Scalability/complexity**: early examples were very small, programs could not scale to bigger instances
 - Limitations of **representations** used
History of AI...

- 70s, 80s: Creation of expert systems (systems specialized for one particular task based on experts’ knowledge), wide industry adoption
- Again, overpromising...
- … led to AI winter(s)
 - Funding cutbacks, bad reputation
Modern AI

• More rigorous, scientific, formal/mathematical

• Fewer grandiose promises

• Divided into many subareas interested in particular aspects

• More directly connected to “neighboring” disciplines
 – Theoretical computer science, statistics, economics, operations research, biology, psychology/neuroscience, …
 – Often leads to question “Is this really AI”?

• Some senior AI researchers are calling for re-integration of all these topics, return to more grandiose goals of AI
 – Somewhat risky proposition for graduate students and junior faculty…
Some AI videos

• Note: there is a lot of AI that is not quite this “sexy” but still very valuable!
 – E.g. logistics planning – DARPA claims that savings from a single AI planning application during 1991 Persian Gulf crisis more than paid back for all of DARPA’s investment in AI, ever. [Russell and Norvig]

• http://www.youtube.com/watch?v=1JJsBFiXGl0&feature=related
• http://www.youtube.com/watch?v=ICgL1OWsn58&feature=related
• http://www.cs.utexas.edu/~kdresner/aim/video/fcfs-insanity.mov
• http://www.youtube.com/watch?v=HacG_FWWPOw&feature=related
• http://videolectures.net/aaai07_littman_ai/
• http://www.ai.sri.com/~nysmith/videos/SRI_AR-PA_AAAI08.avi
• http://www.youtube.com/watch?v=ScXX2bndGJc
This course

• Focus on general AI techniques that have been useful in many applications

• Will try to avoid application-specific techniques (still interesting and worthwhile!)
Topics

- Search
- Constraint satisfaction problems
- Game playing
- Logic, knowledge representation
- Planning
- Probability, decision theory, game theory, reasoning under uncertainty
- Machine learning, reinforcement learning
Nonexhaustive list of AI publications

- General AI conferences: IJCAI, AAAI, ECAI
- Reasoning under uncertainty: UAI
- Machine learning: ICML, NIPS
- Multiagent systems: AAMAS
- Vision: ICCV, CVPR

- AI Magazine
AI at Duke

- Ron Parr
 - Reasoning under uncertainty, reinforcement learning, robotics
- Vince Conitzer
 - Systems with multiple, self-interested agents, game theory, economics
- Carlo Tomasi
 - Computer vision, medical imaging
- Alex Hartemink
 - Computational biology, machine learning, reasoning under uncertainty
- Bruce Donald
 - Computational biology & chemistry
- Sayan Mukherjee
 - Statistics
- Duke Robotics, Intelligence, and Vision (DRIV) seminar (=AI seminar)